2,036 research outputs found

    Nonlocal spectral properties of disordered alloys

    Full text link
    A general method is proposed for calculating a fully k-dependent, continuous, and causal spectral function A(k,E) within the recently introduced nonlocal version of the coherent-potential approximation (NLCPA). The method involves the combination of both periodic and anti-periodic solutions to the associated cluster problem and also leads to correct bulk quantities for small cluster sizes. We illustrate the method by investigating the Fermi surface of a two-dimensional alloy. Dramatically, we find a smeared electronic topological transition not predicted by the conventional CPA.Comment: 17 pages, 5 figures, Submitted to: J. Phys.: Condens. Matter Editorial receipt 25 May 200

    Investigation of the nonlocal coherent-potential approximation

    Full text link
    Recently the nonlocal coherent-potential approximation (NLCPA) has been introduced by Jarrell and Krishnamurthy for describing the electronic structure of substitutionally disordered systems. The NLCPA provides systematic corrections to the widely used coherent-potential approximation (CPA) whilst preserving the full symmetry of the underlying lattice. Here an analytical and systematic numerical study of the NLCPA is presented for a one-dimensional tight-binding model Hamiltonian, and comparisons with the embedded cluster method (ECM) and molecular coherent potential approximation (MCPA) are made.Comment: 18 pages, 5 figure

    Evidence of Variable Zn/Fe in Zinc-Ferrites Produced From Roasting of Zinc Sulphide Concentrate

    Get PDF
    Zn-Fe-O phases formed during roasting of concentrates from zinc sulfide ores produce soluble zinc oxide, oxy-sulfates and insoluble ferrite compounds. The ferrites have a general formula ZnOFe2O3. However, these ferrites have a range of magnetic properties, suggesting variable stoichiometry. Scanning electron microscopy has been used to obtain the general relationship between the Zn/Fe ratio of the ferrites and their magnetic susceptibility

    PIC Simulations of the Temperature Anisotropy-Driven Weibel Instability: Analyzing the perpendicular mode

    Full text link
    An instability driven by the thermal anisotropy of a single electron species is investigated in a 2D particle-in-cell (PIC) simulation. This instability is the one considered by Weibel and it differs from the beam driven filamentation instability. A comparison of the simulation results with analytic theory provides similar exponential growth rates of the magnetic field during the linear growth phase of the instability. We observe in accordance with previous works the growth of electric fields during the saturation phase of the instability. Some components of this electric field are not accounted for by the linearized theory. A single-fluid-based theory is used to determine the source of this nonlinear electric field. It is demonstrated that the magnetic stress tensor, which vanishes in a 1D geometry, is more important in this 2-dimensional model used here. The electric field grows to an amplitude, which yields a force on the electrons that is comparable to the magnetic one. The peak energy density of each magnetic field component in the simulation plane agrees with previous estimates. Eddy currents develop, which let the amplitude of the third magnetic field component grow, which is not observed in a 1D simulation.Comment: accepted by Plasma Physics and Controlled Fusio

    The filamentation instability driven by warm electron beams: Statistics and electric field generation

    Full text link
    The filamentation instability of counterpropagating symmetric beams of electrons is examined with 1D and 2D particle-in-cell (PIC) simulations, which are oriented orthogonally to the beam velocity vector. The beams are uniform, warm and their relative speed is mildly relativistic. The dynamics of the filaments is examined in 2D and it is confirmed that their characteristic size increases linearly in time. Currents orthogonal to the beam velocity vector are driven through the magnetic and electric fields in the simulation plane. The fields are tied to the filament boundaries and the scale size of the flow-aligned and the perpendicular currents are thus equal. It is confirmed that the electrostatic and the magnetic forces are equally important, when the filamentation instability saturates in 1D. Their balance is apparently the saturation mechanism of the filamentation instability for our initial conditions. The electric force is relatively weaker but not negligible in the 2D simulation, where the electron temperature is set higher to reduce the computational cost. The magnetic pressure gradient is the principal source of the electrostatic field, when and after the instability saturates in the 1D simulation and in the 2D simulation.Comment: 10 pages, 6 figures, accepted by the Plasma Physics and Controlled Fusion (Special Issue EPS 2009

    Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    Get PDF
    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ≤ 1.9%. The uniformity of the image quality performance has been further investigated in a typical X-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practise. Finally, in order to compare the detection capability of this novel APS with the currently used technology (i.e. FPIs), theoretical evaluation of the Detection Quantum Efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, X-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications

    Wideband gyro-amplifiers

    Get PDF
    Gyro-amplifiers using helically corrugated waveguides have shown exceptional gain, power, bandwidth, and efficiency performance at cm and mm wavelengths. The performance of a long pulse (and therefore high vacuum) system is strongly influenced by factors other than the intrinsic bandwidth of the interaction. We shall discuss these and other challenges, along with their mitigation in high average power wideband amplifiers
    corecore