36,051 research outputs found
Central extensions of classical and quantum q-Viraroso algebras
We investigate the central extensions of the q-deformed (classical and
quantum) Virasoro algebras constructed from the elliptic quantum algebra
A_{q,p}[sl(N)_c]. After establishing the expressions of the cocycle conditions,
we solve them, both in the classical and in the quantum case (for sl(2)). We
find that the consistent central extensions are much more general that those
found previously in the literature.Comment: Latex2e, needs amsfonts and amssymb package
From quantum to elliptic algebras
It is shown that the elliptic algebra at the
critical level c=-2 has a multidimensional center containing some trace-like
operators t(z). A family of Poisson structures indexed by a non-negative
integer and containing the q-deformed Virasoro algebra is constructed on this
center. We show also that t(z) close an exchange algebra when p^m=q^{c+2} for m
integer, they commute when in addition p=q^{2k} for k integer non-zero, and
they belong to the center of when k is odd. The
Poisson structures obtained for t(z) in these classical limits contain the
q-deformed Virasoro algebra, characterizing the structures at generic values of
p, q and m as new algebras.Comment: LaTeX2e Document - packages subeqn,amsfont
Deformed W_N algebras from elliptic sl(N) algebras
We extend to the sl(N) case the results that we previously obtained on the
construction of W_{q,p} algebras from the elliptic algebra
A_{q,p}(\hat{sl}(2)_c). The elliptic algebra A_{q,p}(\hat{sl}(N)_c) at the
critical level c=-N has an extended center containing trace-like operators
t(z). Families of Poisson structures indexed by N(N-1)/2 integers, defining
q-deformations of the W_N algebra, are constructed. The operators t(z) also
close an exchange algebra when (-p^1/2)^{NM} = q^{-c-N} for M in Z. It becomes
Abelian when in addition p=q^{Nh} where h is a non-zero integer. The Poisson
structures obtained in these classical limits contain different q-deformed W_N
algebras depending on the parity of h, characterizing the exchange structures
at p \ne q^{Nh} as new W_{q,p}(sl(N)) algebras.Comment: LaTeX2e Document - packages subeqn,amsfonts,amssymb - 30 page
Universal construction of W_{p,q} algebras
We present a direct construction of abstract generators for q-deformed W_N
algebras. This procedure hinges upon a twisted trace formula for the elliptic
algebra A_{q,p}(sl(N)_c) generalizing the previously known formulae for quantum
groups.Comment: packages amsfonts, amssym
Gene Expression Profile Changes After Short-activating RNA-mediated Induction of Endogenous Pluripotency Factors in Human Mesenchymal Stem Cells
It is now recognized that small noncoding RNA sequences have the ability to mediate transcriptional activation of specific target genes in human cells. Using bioinformatics analysis and functional screening, we screened short-activating RNA (saRNA) oligonucleotides designed to target the promoter regions of the pluripotency reprogramming factors, Kruppel-like factor 4 (KLF4) and c-MYC. We identified KLF4 and c-MYC promoter-targeted saRNA sequences that consistently induced increases in their respective levels of nascent mRNA and protein expression in a time- and dose-dependent manner, as compared with scrambled sequence control oligonucleotides. The functional consequences of saRNA-induced activation of each targeted reprogramming factor were then characterized by comprehensively profiling changes in gene expression by microarray analysis, which revealed significant increases in mRNA levels of their respective downstream pathway genes. Notably, the microarray profile after saRNA-mediated induction of endogenous KLF4 and c-MYC showed similar gene expression patterns for stem cell- and cell cycle-related genes as compared with lentiviral vector-mediated overexpression of exogenous KLF4 and c-MYC transgenes, while divergent gene expression patterns common to viral vector-mediated transgene delivery were also noted. The use of promoter-targeted saRNAs for the activation of pluripotency reprogramming factors could have broad implications for stem cell research
Signatures of Klein tunneling in disordered graphene p-n-p junctions
We present a method for obtaining quantum transport properties in graphene
that uniquely combines three crucial features: microscopic treatment of charge
disorder, fully quantum mechanical analysis of transport, and the ability to
model experimentally relevant system sizes. As a pertinent application we study
the disorder dependence of Klein tunneling dominated transport in p-n-p
junctions. Both the resistance and the Fano factor show broad resonance peaks
due to the presence of quasi bound states. This feature is washed out by the
disorder when the mean free path becomes of the order of the distance between
the two p-n interfaces.Comment: 4 pages, 4 figure
Quantized evolution of the plasmonic response in a stretched nanorod
Quantum aspects, such as electron tunneling between closely separated
metallic nanoparticles, are crucial for understanding the plasmonic response of
nanoscale systems. We explore quantum effects on the response of the
conductively coupled metallic nanoparticle dimer. This is realized by
stretching a nanorod, which leads to the formation of a narrowing atomic
contact between the two nanorod ends. Based on first-principles time-dependent
density-functional-theory calculations, we find a discontinuous evolution of
the plasmonic response as the nanorod is stretched. This is especially
pronounced for the intensity of the main charge-transfer plasmon mode. We show
the correlation between the observed discontinuities and the discrete nature of
the conduction channels supported by the formed atomic-sized junction.Comment: Main text: 6 pages, 2 figures; Supplemental Material: 5 pages, 4
figure
Twisted Eguchi-Kawai Reduced Chiral Models
We study the twisted Eguchi-Kawai (TEK) reduction procedure for large-N
unitary matrix lattice models. In particular, we consider the case of
two-dimensional principal chiral models, and use numerical Monte Carlo (MC)
simulations to check the conjectured equivalence of TEK reduced model and
standard lattice model in the large-N limit. The MC results are compared with
the large-N limit of lattice principal chiral models to verify the supposed
equivalence. The consistency of the TEK reduction procedure is verified in the
strong-coupling region, i.e. for where is the
location of the large-N phase transition. On the other hand, in the
weak-coupling regime , relevant for the continuum limit, our MC
results do not support the equivalence of the large-N limits of the lattice
chiral model and the corresponding TEK reduction. The implications for the
correspondence between TEK model and noncommutative field theory are also
discussed.Comment: 16 page
- …