25,048 research outputs found

    A simple atomistic model for the simulation of the gel phase of lipid bilayers

    Get PDF
    In this paper we present the results of a large-scale numerical investigation of structural properties of a model of cell membrane, simulated as a bilayer of flexible molecules in vacuum. The study was performed by carrying out extensive Molecular Dynamics simulations, in the (NVE) micro-canonical ensemble, of two systems of different sizes (2x32 and 2x256 molecules), over a fairly large set of temperatures and densities, using parallel platforms and more standard serial computers. Depending on the dimension of the system, the dynamics was followed for physical times that go from few hundred of picoseconds for the largest system to 5--10 nanoseconds for the smallest one. We find that the bilayer remains stable even in the absence of water and neglecting Coulomb interactions in the whole range of temperatures and densities we have investigated. The extension of the region of physical parameters that we have explored has allowed us to study significant points in the phase diagram of the bilayer and to expose marked structural changes as density and temperature are varied, which are interpreted as the system passing from a crystal to a gel phase.Comment: 41 pages, 13 figure

    \Delta S=2 and \Delta C=2 bag parameters in the SM and beyond from Nf=2+1+1 twisted-mass LQCD

    Full text link
    We present unquenched lattice QCD results for the matrix elements of four-fermion operators relevant to the description of the neutral K and D mixing in the Standard Model and its extensions. We have employed simulations with Nf = 2 + 1 + 1 dynamical sea quarks at three values of the lattice spacings in the interval 0.06 - 0.09 fm and pseudoscalar meson masses in the range 210 - 450 MeV. Our results are extrapolated to the continuum limit and to the physical pion mass. Renormalization constants have been determined non-perturbatively in the RI-MOM scheme. In particular, for the Kaon bag-parameter, which is relevant for the \overline{K}^0-K^0 mixing in the Standard Model, we obtain B_K^{RGI} = 0.717(24).Comment: Added comments to error budget discussion; fig.19 corrected. Version to appear in PR

    The PS 10 MHz High Level RF System Upgrade

    Get PDF
    In view of the upgrade of the injectors for the High Luminosity LHC, significantly higher bunch intensity is required for LHC-type beams. In this context an upgrade of the main accelerating RF system of the Proton Synchrotron (PS) is necessary, aiming at reducing the cavity impedance which is the source of longitudinal coupled-bunch oscillations. These instabilities pose as a major limitation for the increase of the beam intensity as planned after LS2. The 10 MHz RF system consists in 11 ferrite loaded cavities, driven by tube-based power amplifiers for reasons of radiation hardness. The cavity-amplifier system is equipped with a wide-band feedback that reduces the beam induced voltage. A further reduction of the beam loading is foreseen by upgrading the feedback system, which can be reasonably achieved by increasing the loop gain of the existing amplification chain. This paper describes the progress of the design of the upgraded feedback system and shows the results of the tests on the new amplifier prototype, installed in the PS during the 2015-16 technical stop. It also reports the first results of its performance with beam, observed in the beginning of the 2016 run

    Quark masses with Nf=2 twisted mass lattice QCD

    Full text link
    We present the results of the recent high precision lattice calculation of the average up/down, strange and charm quark masses performed by ETMC with Nf=2 twisted mass Wilson fermions. The analysis includes data at four values of the lattice spacing and pion masses as low as ~270 MeV, allowing for accurate continuum limit and chiral extrapolation. The strange and charm masses are extracted by using several methods, based on different observables: the kaon and the eta_s meson for the strange quark and the D, D_s and eta_c mesons for the charm. The quark mass renormalization is carried out non-perturbatively using the RI-MOM method. The results for the quark masses in the MSbar scheme read: m_ud(2 GeV)= 3.6(2) MeV, m_s(2 GeV)=95(6) MeV and m_c(m_c)=1.28(4) GeV. We have also obtained the ratios m_s/m_ud=27.3(9) and m_c/m_s=12.0(3). Moreover, we provide the updated result for the bottom quark mass, m_b(m_b)=4.3(2) GeV, obtained using the method presented in 0909.3187 [hep-lat].Comment: 7 pages, 7 figures, talk given at the XXVIII International Symposium on Lattice Field Theory (Lattice 2010), June 14-19 2010, Villasimius, Ital

    Assessment of bridge Post‐Tensioning systems using non‐destructive (ND) inspection methods

    Get PDF
    Reinforced concrete bridges with post-tensioned cables are particularly critical structures, as the degradation of the tendons is not fully detectable through conventional investigation methods and/or through visual inspections, due to the intrinsic nature of the structural typology. After shortly reviewing the main applications of current non-destructive (ND) methods available for investigating the deterioration of tendons and grout, the paper presents a simple procedure to rank these methods through a series of metrics formulated to evaluate the various technologies under four different aspects: accuracy of measurement, ease of use, cost, impact on the operation of the bridge. The procedure has the aim of providing bridge owners with a decision tool which can assist in the selection of the optimal ND technology available to detect a particular strand or grout defec

    Kaon oscillations in the Standard Model and Beyond using Nf=2 dynamical quarks

    Get PDF
    We compute non-perturbatively the B-parameters of the complete basis of four-fermion operators needed to study the Kaon oscillations in the SM and in its supersymmetric extension. We perform numerical simulations with two dynamical maximally twisted sea quarks at three values of the lattice spacing on configurations generated by the ETMC. Unwanted operator mixings and O(a) discretization effects are removed by discretizing the valence quarks with a suitable Osterwalder-Seiler variant of the Twisted Mass action. Operators are renormalized non-perturbatively in the RI/MOM scheme. Our preliminary result for BK(RGI) is 0.73(3)(3).Comment: 7 pages, 3 figures, 1 table, proceedings of the XXVII Int'l Symposyum on Lattice Field Theory (LAT2009), July 26-31 2009, Peking University, Beijing (China

    K^0-\bar{K}^0 mixing in the Standard Model from Nf=2+1+1 Twisted Mass Lattice QCD

    Full text link
    We present preliminary results at {\beta} = 1.95 (a = 0.077 fm) on the first unquenched N_f=2+1+1 lattice computation of the B_K parameter which controls the neutral kaon oscillations in the Standard Model. Using N_f=2+1+1 maximally twisted sea quarks and Osterwalder-Seiler valence quarks we achieve O(a) improvement and a continuum-like renormalization pattern for the four-fermion operator. Our results are extrapolated/interpolated to the physical light/strange quark mass but not yet to the continuum limit. The computation of the relevant renormalization constants is performed non perturbatively in the RI'-MOM scheme using dedicated simulations with N_f=4 degenerate sea quark flavours produced by the ETM collaboration. We get B_K^{RGI} (a = 0.077) = 0.747(18), which when compared to our previous unquenched N_f=2 determination and most of the existing results, suggests a rather weak B_K^{RGI} dependence on the number of dynamical flavours. We are at the moment analysing lattice data at two additional {\beta} values which will allow us to perform an extrapolation to the continuum limit.Comment: 7 pages, 8 figures, Proceedings of Lattice 2011, XXIX International Symposium on Lattice Field Theory, Squaw Valley, Lake Tahoe, Californi

    Electrostatic Patch Effect in Cylindrical Geometry. III. Torques

    Full text link
    We continue to study the effect of uneven voltage distribution on two close cylindrical conductors with parallel axes started in our papers [1] and [2], now to find the electrostatic torques. We calculate the electrostatic potential and energy to lowest order in the gap to cylinder radius ratio for an arbitrary relative rotation of the cylinders about their symmetry axis. By energy conservation, the axial torque, independent of the uniform voltage difference, is found as a derivative of the energy in the rotation angle. We also derive both the axial and slanting torques by the surface integration method: the torque vector is the integral over the cylinder surface of the cross product of the electrostatic force on a surface element and its position vector. The slanting torque consists of two parts: one coming from the interaction between the patch and the uniform voltages, and the other due to the patch interaction. General properties of the torques are described. A convenient model of a localized patch suggested in [2] is used to calculate the torques explicitly in terms of elementary functions. Based on this, we analyze in detail patch interaction for one pair of patches, namely, the torque dependence on the patch parameters (width and strength) and their mutual positions. The effect of the axial torque is then studied for the experimental conditions of the STEP mission.Comment: 28 pages, 6 Figures. Submitted to Classical Quantum Gravit
    • 

    corecore