2,355 research outputs found
Nonequilibrium Transport through a Kondo Dot: Decoherence Effects
We investigate the effects of voltage induced spin-relaxation in a quantum
dot in the Kondo regime. Using nonequilibrium perturbation theory, we determine
the joint effect of self-energy and vertex corrections to the conduction
electron T-matrix in the limit of transport voltage much larger than
temperature. The logarithmic divergences, developing near the different
chemical potentials of the leads, are found to be cut off by spin-relaxation
rates, implying that the nonequilibrium Kondo-problem remains at weak coupling
as long as voltage is much larger than the Kondo temperature.Comment: 16 pages, 4 figure
Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices
As highly tunable interacting systems, cold atoms in optical lattices are
ideal to realize and observe negative absolute temperatures, T < 0. We show
theoretically that by reversing the confining potential, stable superfluid
condensates at finite momentum and T < 0 can be created with low entropy
production for attractive bosons. They may serve as `smoking gun' signatures of
equilibrated T < 0. For fermions, we analyze the time scales needed to
equilibrate to T < 0. For moderate interactions, the equilibration time is
proportional to the square of the radius of the cloud and grows with increasing
interaction strengths as atoms and energy are transported by diffusive
processes.Comment: published version, minor change
Spin conductivity in almost integrable spin chains
The spin conductivity in the integrable spin-1/2 XXZ-chain is known to be
infinite at finite temperatures T for anisotropies -1 < Delta < 1.
Perturbations which break integrability, e.g. a next-nearest neighbor coupling
J', render the conductivity finite. We construct numerically a non-local
conserved operator J_parallel which is responsible for the finite spin Drude
weight of the integrable model and calculate its decay rate for small J'. This
allows us to obtain a lower bound for the spin conductivity sigma_s >= c(T) /
J'^2, where c(T) is finite for J' to 0. We discuss the implication of our
result for the general question how non-local conservation laws affect
transport properties.Comment: 6 pages, 5 figure
Mott transition of fermionic atoms in a three-dimensional optical trap
We study theoretically the Mott metal-insulator transition for a system of
fermionic atoms confined in a three-dimensional optical lattice and a harmonic
trap. We describe an inhomogeneous system of several thousand sites using an
adaptation of dynamical mean field theory solved efficiently with the numerical
renormalization group method. Above a critical value of the on-site
interaction, a Mott-insulating phase appears in the system. We investigate
signatures of the Mott phase in the density profile and in time-of-flight
experiments.Comment: 4 pages and 5 figure
Metal-Insulator Transition of the LaAlO3-SrTiO3 Interface Electron System
We report on a metal-insulator transition in the LaAlO3-SrTiO3 interface
electron system, of which the carrier density is tuned by an electric gate
field. Below a critical carrier density n_c ranging from 0.5-1.5 * 10^13/cm^2,
LaAlO3-SrTiO3 interfaces, forming drain-source channels in field-effect devices
are non-ohmic. The differential resistance at zero channel bias diverges within
a 2% variation of the carrier density. Above n_c, the conductivity of the ohmic
channels has a metal-like temperature dependence, while below n_c conductivity
sets in only above a threshold electric field. For a given thickness of the
LaAlO3 layer, the conductivity follows a sigma_0 ~(n - n_c)/n_c characteristic.
The metal-insulator transition is found to be distinct from that of the
semiconductor 2D systems.Comment: 4 figure
Giant mass and anomalous mobility of particles in fermionic systems
We calculate the mobility of a heavy particle coupled to a Fermi sea within a
non-perturbative approach valid at all temperatures. The interplay of particle
recoil and of strong coupling effects, leading to the orthogonality catastrophe
for an infinitely heavy particle, is carefully taken into account. We find two
novel types of strong coupling effects: a new low energy scale and
a giant mass renormalization in the case of either near-resonant scattering or
a large transport cross section . The mobility is shown to obey two
different power laws below and above . For ,
where is the Fermi wave length, an exponentially large effective
mass suppresses the mobility.Comment: 4 pages, 4 figure
Weak spin-orbit interactions induce exponentially flat mini-bands in magnetic metals without inversion symmetry
In metallic magnets like MnSi the interplay of two very weak spin-orbit
coupling effects can strongly modify the Fermi surface. In the absence of
inversion symmetry even a very small Dzyaloshinsky-Moriya interaction of
strength delta<<1 distorts a ferromagnetic state into a chiral helix with a
long pitch of order 1/delta. We show that additional small spin-orbit coupling
terms of order delta in the band structure lead to the formation of
exponentially flat minibands with a bandwidth of order exp(-1/sqrt(delta))
parallel to the direction of the helix. These flat minibands cover a rather
broad belt of width sqrt(delta) on the Fermi surface where electron motion
parallel to the helix practically stops. We argue that these peculiar
band-structure effects lead to pronounced features in the anomalous skin
effect.Comment: 7 pages, minor corrections, references adde
- …