8 research outputs found
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Preparation and Application of Co-Doped Zinc Oxide: A Review
Due to a wide band gap and large exciton binding energy, zinc oxide (ZnO) is currently receiving much attention in various areas, and can be prepared in various forms including nanorods, nanowires, nanoflowers, and so on. The reliability of ZnO produced by a single dopant is unstable, which in turn promotes the development of co-doping techniques. Co-doping is a very promising technique to effectively modulate the optical, electrical, magnetic, and photocatalytic properties of ZnO, as well as the ability to form various structures. In this paper, the important advances in co-doped ZnO nanomaterials are summarized, as well as the preparation of co-doped ZnO nanomaterials by using different methods, including hydrothermal, solvothermal, sol-gel, and acoustic chemistry. In addition, the wide range of applications of co-doped ZnO nanomaterials in photocatalysis, solar cells, gas sensors, and biomedicine are discussed. Finally, the challenges and future prospects in the field of co-doped ZnO nanomaterials are also elucidated
Tailoring lithium concentration in alloy anodes for long cycling and high areal capacity in sulfide-based all solid-state batteries
Lithium–indium (Li-In) alloys are important anode materials for sulfide-based all-solid-state batteries (ASSBs), but how different Li concentrations in the alloy anodes impact the electrochemical performance of ASSBs remains unexplored. This paper systematically investigates the impact that different Li concentrations in Li-In anodes have on the performance of ASSBs. We show that In with 1 ​wt% Li (LiIn-1) exhibits the best performance for ASSBs among all the tested Li-In anodes. In essence, LiIn-1 not only provides sufficient Li to compensate for first-cycle capacity loss in the anode but also facilitates the formation of a LiIn alloy phase that has the best charge transfer kinetics among all the LixIn alloy phases. The ASSB with a LiIn-1 anode and a LiNi0.8Mn0.1Co0.1O2 cathode reached 3400 cycles at an initial capacity of 125 mAh/g. Remarkably, ASSBs with a high cathode active material (CAM) loading of 36 ​mg/cm2 delivered a high areal capacity of 4.05 mAh/cm2 at high current density (4.8 ​mA/cm2), with a capacity retention of 92% after 740 cycles. At an ultra-high CAM loading of 55.3 ​mg/cm2, the ASSB achieved a stable areal capacity of 8.4 mAh/cm2 at current density of 1.7 ​mA/cm2. These results bring us one step closer to the practical application of ASSBs
Integrated microcavity electric field sensors using Pound-Drever-Hall detection
Abstract Discerning weak electric fields has important implications for cosmology, quantum technology, and identifying power system failures. Photonic integration of electric field sensors is highly desired for practical considerations and offers opportunities to improve performance by enhancing microwave and lightwave interactions. Here, we demonstrate a high-Q microcavity electric field sensor (MEFS) by leveraging the silicon chip-based thin film lithium niobate photonic integrated circuits. Using the Pound-Drever-Hall detection scheme, our MEFS achieves a detection sensitivity of 5.2 μV/(m Hz ), which surpasses previous lithium niobate electro-optical electric field sensors by nearly two orders of magnitude, and is comparable to atom-based quantum sensing approaches. Furthermore, our MEFS has a bandwidth that can be up to three orders of magnitude broader than quantum sensing approaches and measures fast electric field amplitude and phase variations in real-time. The ultra-sensitive MEFSs represent a significant step towards building electric field sensing networks and broaden the application spectrum of integrated microcavities
Recommended from our members
Morphodynamics of dendrite growth in alumina based all solid-state sodium metal batteries
All solid-state batteries (ASSBs) with ceramic electrolytes and alkali metal anodes are a potential future energy storage technology for vehicle electrification and smart grids. However, uncontrollable dendrite growth toward ultimate short circuiting in solid electrolytes (SEs) has become a serious concern in the design of long-cycle, safe ASSBs, and the underlying mechanism has remained unclear. Here through multiscale imaging and morphodynamic tracking we show that Na dendrites grow in β′′-Al2O3 SEs through an alternating sequence of Na deposition and crack propagation. Atomic-scale imaging evidenced that electrochemical cycling causes massive delamination cracking along the Na+ conduction planes, accompanied by the closure of neighboring conduction channels. In situ SEM observations revealed a dynamic interplay between Na deposition and crack propagation: Na deposition accumulates mechanical stress that induces cracking; cracking releases the local stress, which promotes further Na deposition. Thus, Na deposition and cracking alternatingly proceed until short circuits take place. A multiscale phase-field model is developed to recapitulate the morphodynamics of Na dendrite growth, predicting the tree-like fractal morphology of the growing dendrites. Our findings suggest that decoupling between Na deposition and cracking represents an important route to mitigate uncontrollable dendrite growth in ASSBs
Recommended from our members
Reviving the rock-salt phases in Ni-rich layered cathodes by mechano-electrochemistry in all-solid-state batteries
The rock-salt phase (RSP) formed on the surface of Ni-rich layered cathodes in liquid-electrolyte lithium-ion batteries is conceived to be electrochemically "dead". Here we show massive RSP forms in the interior of LiNixMnyCo(1−x-y)O2 (NMC) crystals in sulfide based all solid state batteries (ASSBs), but the RSP remains electrochemically active even after long cycles. The RSP and the layered structure constitute a two-phase mixture, a material architecture that is distinctly different from the RSP in liquid electrolytes. The tensioned layered phase affords an effective percolation channel into which lithium is squeezed out of the RSPs by compressive stress, rendering the RSPs electrochemically active. Consequently, the ASSBs with predominant RSP in the NMC cathode deliver remarkable long cycle life of 4000 cycles at high areal capacity of 4.3 mAh/cm2. Our study unveils distinct mechano-electrochemistry of RSPs in ASSBs that can be harnessed to enable high energy density and durable ASSBs