18,498 research outputs found

    A Complex Case of Cholestasis in a Patient with ABCB4 and ABCB11 Mutations

    Get PDF
    The low-phospholipid-associated cholelithiasis (LPAC) syndrome is a form of symptomatic cholelithiasis occurring in young adults, characterized by recurrence of symptoms after cholecystectomy and presence of hepatolithiasis. The case refers to a healthy 39-year-old Caucasian male who presented with abdominal pain and jaundice. His blood tests showed conjugated hyperbilirubinemia and elevated liver enzymes (total bilirubin 6.65 mg/dL, γ-glutamyltransferase 699 IU/L) and abdominal computed tomography revealed dilation of common bile duct and left intrahepatic ducts. Magnetic resonance cholangiopancreatography identified choledocholithiasis, retrieved by endoscopic retrograde cholangiopancreatography, after which there was a worsening of jaundice (total bilirubin 23 mg/dL), which persisted for several weeks, possibly due to ciprofloxacin toxicity. After an extensive workup including liver biopsy, the identification of two foci of hepatolithiasis on reevaluation abdominal ultrasound raised the hypothesis of LPAC syndrome and the patient was started on ursodeoxycholic acid, with remarkable improvement. Genetic testing identified the mutation c.1954A>G (p.Arg652Gly) in ABCB4 gene (homozygous) and c.1331T>C (p.Val444Ala) in ABCB11 gene (heterozygous). In conclusion, we describe the unique case of an adult male with choledocholithiasis, hepatolithiasis, and persistent conjugated hyperbilirubinemia after retrieval of stones, fulfilling the criteria for LPAC syndrome and with possible superimposed drug-induced liver injury, in whom ABCB4 and ABCB11 mutations were found, both of which had not been previously described in association with LPAC.info:eu-repo/semantics/publishedVersio

    Evidence of spontaneous spin polarized transport in magnetic nanowires

    Full text link
    The exploitation of the spin in charge-based systems is opening revolutionary opportunities for device architecture. Surprisingly, room temperature electrical transport through magnetic nanowires is still an unresolved issue. Here, we show that ferromagnetic (Co) suspended atom chains spontaneously display an electron transport of half a conductance quantum, as expected for a fully polarized conduction channel. Similar behavior has been observed for Pd (a quasi-magnetic 4d metal) and Pt (a non-magnetic 5d metal). These results suggest that the nanowire low dimensionality reinforces or induces magnetic behavior, lifting off spin degeneracy even at room temperature and zero external magnetic field.Comment: 4 pages, 3 eps fig
    • …
    corecore