2,912 research outputs found

    Novel method for the isolation of adipose stem cells (ASCs)

    Get PDF
    Adipose stem cells (ASCs) represent a cell population with great potential for tissue engineering applications. Several articles have been published showing the proliferation and differentiation potential, the markers and the wide range of potential applications of these cells. In the majority of these studies the ASCs are isolated using a basic enzymatic procedure, which results in a quite heterogeneous cell population that compromises their proliferation and differentiation. This paper reports the development and optimization of a new isolation/purification method that allows populations of ASCs to be obtained, which significantly reduces (and eventually eliminates) the ‘contamination’ of other cell types. This method is based on the use of immunomagnetic beads coated with specific antibodies. The first part of the study described here analysed the expression of marker genes for stem cells and the colony-forming unit (CFU) capacity of the cells isolated, while the second part is dedicated to the osteogenic differentiation potential of the isolated cells. The results showed that, using the isolation method based on immunomagnetic beads, it was possible to obtain ASCs and also underline the existence of several subpopulations of stem cells in the adipose tissue

    Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005

    Get PDF
    The Cordilleras Huayhuash and Raura are remote glacierized ranges in the Andes Mountains of Peru. A robust assessment of modern glacier change is important for understanding how regional change affects Andean communities, and for placing paleo-glaciers in a context relative to modern glaciation and climate. Snowline altitudes (SLAs) derived from satellite imagery are used as a proxy for modern (1986–2005) local climate change in a key transition zone in the Andes. <br><br> Clear sky, dry season Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) satellite images from 1986–2005 were used to identify snowline positions, and their altitude ranges were extracted from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM). Based on satellite records from 31 glaciers, average snowline altitudes (SLAs), an approximation for the equilibrium line altitude (ELA), for the Cordillera Huayhuash (13 glaciers) and Cordillera Raura (18 glaciers) from 1986–2005 were 5051 m a.s.l. from 1986–2005 and 5006 m a.s.l. from 1986–2002, respectively. During the same time period, the Cordillera Huayhuash SLA experienced no significant change while the Cordillera Raura SLA rose significantly from 4947 m a.s.l. to 5044 m a.s.l

    Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change

    Get PDF
    The Pole-Equator-Pole (PEP) projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere) programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise) during the last glaciation is critical to understanding interhemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH) and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH) regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i) faster response times in alpine systems and Antarctica, ii) regional moisture patterns that influenced glacier mass balance, or iii) a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO) phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene. 3. The recognition of climate modulation of oscillatory systems by climate events. We examine the relationship of ENSO to a SH climate event, the Antarctic cold reversal (ACR), in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future changes

    Magnetic and thermodynamic properties of Sr_{2}LaFe_{3}O_{9}

    Full text link
    Using a Dirac-Heisenberg Hamiltonian with biquadratic exchange interactions, we study the effect of iron disproportionation on the magnetic ordering, and describe the first-order magnetic transition occurring in the perovskite Sr_{2}LaFe_{3}O_{9}. Upon fitting the experimental data, we give an estimate of the exchange integrals for the antiferromagntic and ferromagnetic interactions, in agreement with previous works on kindered compounds. Spin-wave theory yields a magnon spectrum with a gapless antiferromagnetic mode together with two gapped ferromagnetic ones.Comment: 8 pages of RevTex, 5 figures (available upon request), submitted to J. Mag. Mag. Ma
    • …
    corecore