14 research outputs found

    Reproductive cycle and embryonic development of the gastropod Melampus coffeus (Linnaeus, 1758) (Ellobiidae) in the Brazilian Northeast

    No full text
    Melampus coffeus belongs to a primitive group of pulmonate mollusks found mainly in the upper levels of the marine intertidal zone. They are common in the neotropical mangroves. Little is known about the biology of this species, particularly about its reproduction. The aim of this study was to 1) characterize the morphology and histology of M. coffeus' gonad; 2) describe the main gametogenesis events and link them to a range of maturity stages; 3) chronologically evaluate the frequency of the different maturity stages and their relation to environmental factors such as water, air and sediment temperatures, relative humidity, salinity and rainfall; and 4) characterize M. coffeus' spawning, eggs and newly hatched veliger larvae. Samples were collected monthly between February, 2007 and January, 2009 from the mangroves of Praia de Arpoeiras, Acaraú County, State of Ceará, northeastern Brazil. The characterization of the gonad development stages was carried out using routine histological techniques. The results of this study show that Melampus coffeus is a simultaneous hermaphrodite. The follicles have masculine and feminine elements, interleaved within the gonad. M. coffeus presents a well-defined synchronous reproductive cycle, showing successive maturation, release and resting periods. The average diameter of the oocytes was negatively correlated with salinity and positively correlated with rainfall. The results show that no reproductive activity occurs during periods of drought. After the dry season, the increasing rainfall levels and reduced salinity lead to the appearance of very dense populations, predominantly composed of small individuals

    Natural products from marine invertebrates against Leishmania parasites: a comprehensive review

    No full text
    Parasitic infections by Leishmania parasites remains a severe public health problem, especially in developing countries where it is highly endemic. Chemotherapy still remains a first option for the treatment of those diseases, despite the fact that available drugs exhibit a variety of shortcomings. Thus, innovative, less toxic more affordable and effective antileishmanial agents are urgently needed. The marine environment holds an immeasurable bio- and chemical diversity, being a valuable source of natural products with therapeutic potential. As invertebrates comprise about 60 % of all marine organisms, bioprospecting this class of organisms for antileishmanial properties may unravel unique and selective hit molecules. In this context, this review covers results on the literature of marine invertebrate extracts and pure compounds evaluated against Leishmania parasites mainly by in vitro methods. It comprises results obtained from the phyla Porifera, Cnidaria, Bryozoa (Ectoprota), Mollusca, Echinodermata, Annelida, Cetnophora, Platyhelminthes, sub phyla Crustacea (phylum Arthropoda) and Tunicata (phylum Chordata). Moreover, structure-activity relationships and possible mechanisms of action are mentioned, whenever available information is provided. About 70 species of marine invertebrates belonging to seven different phyla are included in this work. Besides a variety of crude extracts, a total of 140 pure compounds was tested against different Leishmania species. Although the research on the antileishmanial potential of marine invertebrates is in its early beginnings, promising results have been achieved that encourage further research. As more extracts and compounds are being screened, the possibility of finding active and selective antileishmanial molecules increases, rising new hope in the search for new treatments against leishmaniases
    corecore