22 research outputs found
Evaluation of urinary cysteinyl leukotrienes as biomarkers of severity and putative therapeutic targets in COVID-19 patients
Background Cysteinyl leukotrienes (CysLT) are potent inflammation-promoting mediators, but remain scarcely explored in COVID-19. We evaluated urinary CysLT (U-CysLT) relationship with disease severity and their usefulness for prognostication in hospitalized COVID-19 patients. The impact on U-CysLT of veno-venous extracorporeal membrane oxygenation (VV-ECMO) and of comorbidities such as hypertension and obesity was also assessed. Methods Blood and spot urine were collected in severe (n = 26), critically ill (n = 17) and critically ill on VV-ECMO (n = 17) patients with COVID-19 at days 1-2 (admission), 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. U-CysLT were measured by ELISA. Routine markers, prognostic scores and outcomes were also evaluated. Results U-CysLT did not differ between groups at admission, but significantly increased along hospitalization only in critical groups, being markedly higher in VV-ECMO patients, especially in hypertensives. U-CysLT values during the first week were positively associated with ICU and total hospital length of stay in critical groups and showed acceptable area under curve (AUC) for prediction of 30-day mortality (AUC: 0.734, p = 0.001) among all patients. Conclusions U-CysLT increase during hospitalization in critical COVID-19 patients, especially in hypertensives on VV-ECMO. U-CysLT association with severe outcomes suggests their usefulness for prognostication and as therapeutic targets.This work was supported by a RESEARCH 4 COVID-19 grant (project 519, reference number: 613690173) from FCT-Fundacao para a Ciencia e a Tecnologia (special support for rapid implementation projects for innovative response solutions to COVID-9 pandemic). CS-P is a recipient of a Ph.D. fellowship from FCT and MedInUP (UI/BD/150816/2020). P-PT was supported by a research contract within the scope of the RIFF-HEART project funded by FEDER via COMPETE, Portugal 2020-Operational Programme for Competitiveness and Internationalization (POCI) (POCI-01-0145-FEDER-032188) and by FCT (PTDC/MEC-CAR/32188/2017). Open access funding provided by FCT|FCCN (b-on)
Investigation of ASR Reactivity through Slurry Dissolution Tests
The potential for alkali silica reaction (ASR) has been investigated through dissolution tests and the determination of the concentration of elemental species, Na, K, Ca and Si in the supernatant fluid of GP cement, aggregate and fly ash slurries. The aggregates selected for investigation were a reactive greywacke and a non-reactive micro-diorite both of which contain quartz. Alkali ions were delivered to the solution by the cement, although lower concentrations were released by both the aggregates and fly ash. Silica was released into solution according to aggregate reactivity. Rapid and local release of silica can yield an expansive ASR gel for reactive aggregate. Fly ash was observed to release silica rapidly indicating that the primary action of fly ash is through a competitive reaction for the formation of silica gel thus mitigating deleterious ASR. Quartz content as determined by X-ray diffraction analysis indicated that this phase was the main source of solution silica for the reactive aggregate