940 research outputs found

    Interaction of two systems with saddle-node bifurcations on invariant circles. I. Foundations and the mutualistic case

    Get PDF
    The saddle-node bifurcation on an invariant circle (SNIC) is one of the codimension-one routes to creation or destruction of a periodic orbit in a continuous-time dynamical system. It governs the transition from resting behaviour to periodic spiking in many class I neurons, for example. Here, as a first step towards theory of networks of such units the effect of weak coupling between two systems with a SNIC is analysed. Two crucial parameters of the coupling are identified, which we call \delta_1 and \delta_2. Global bifurcation diagrams are obtained here for the "mutualistic" case \delta_1 \delta_2 > 0. According to the parameter regime, there may coexist resting and periodic attractors, and there can be quasiperiodic attractors of torus or cantorus type, making the behaviour of even such a simple system quite non-trivial. In a second paper we will analyse the mixed case \delta_1 \delta_2 < 0 and summarise the conclusions of this study.Comment: 37 pages, 27 figure

    Abrupt bifurcations in chaotic scattering : view from the anti-integrable limit

    Get PDF
    Bleher, Ott and Grebogi found numerically an interesting chaotic phenomenon in 1989 for the scattering of a particle in a plane from a potential field with several peaks of equal height. They claimed that when the energy E of the particle is slightly less than the peak height Ec there is a hyperbolic suspension of a topological Markov chain from which chaotic scattering occurs, whereas for E > Ec there are no bounded orbits. They called the bifurcation at E = Ec an abrupt bifurcation to chaotic scattering. The aim of this paper is to establish a rigorous mathematical explanation for how chaotic orbits occur via the bifurcation, from the viewpoint of the anti-integrable limit, and to do so for a general range of chaotic scattering problems

    Mode conversion in the cochlea? linear analysis

    Get PDF

    Incomplete pairwise comparison

    Get PDF

    Differential forms for plasma physics

    Get PDF
    Differential forms provide a coordinate-free way to express many quantities and relations in mathematical physics. In particular, they are useful in plasma physics. This tutorial gives a guide so that you can read the plasma physics literature that uses them and apply them yourself
    corecore