Bleher, Ott and Grebogi found numerically an interesting chaotic phenomenon in 1989 for the scattering of a particle in a plane from a potential field with several peaks of equal height. They claimed that when the energy E of the particle is slightly less than the peak height Ec there is a hyperbolic suspension of a topological Markov chain from which chaotic scattering occurs, whereas for E > Ec there are no bounded orbits. They called the bifurcation at E = Ec an abrupt bifurcation to chaotic scattering.
The aim of this paper is to establish a rigorous mathematical explanation for how chaotic orbits occur via the bifurcation, from the viewpoint of the anti-integrable limit, and to do so for a general range of chaotic scattering problems