58,713 research outputs found

    Recent manufacturing advances for spiral bevel gears

    Get PDF
    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time

    Direction of Translation and Size of Bacteriophage [var phi]X174 Cistrons

    Get PDF
    Translation of the bacteriophage [var phi]X174 genome follows cistron order D-E-F-G-H-A-B-C. To establish this, the position of a nonsense mutation on the genetic map was compared with the physical size (molecular weight) of the appropriate protein fragment generated in nonpermissive cells. Distances on the [var phi]X174 genetic map and distances on a physical map constructed from the molecular weights of [var phi]X174 proteins and protein fragments are proportional over most of the genome with the exception of the high recombination region within cistron A

    A review of atomic clock technology, the performance capability of present spaceborne and terrestrial atomic clocks, and a look toward the future

    Get PDF
    Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms

    Polarographic study of cadmium 5-hydroxy 2-(hydroxymethyl) 4H-pyran-4-one complex

    Get PDF
    A polarographic study was performed on the products formed in the interaction of cadmium (II) with a 5-hydroxy 2-(hydroxymethyl) 4H-Pyran-4-one, using varying conditions of pH, supporting electrolytes, and concentrations. Measurements using the differential pulse method show that cadmium (II) exhibits a molar combining ratio of complexing agents to cation ranging from 1 to 1 to 3 to 1 depending on the pH and the supporting electrolyte employed

    Towards Initial Mass Functions for Asteroids and Kuiper Belt Objects

    Full text link
    Our goal is to understand primary accretion of the first planetesimals. The primitive meteorite record suggests that sizeable planetesimals formed in the asteroid belt over a period longer than a million years, each composed entirely of an unusual, but homogeneous, mixture of mm-size particles. We sketch a scenario in which primary accretion of 10-100km size planetesimals proceeds directly, if sporadically, from aerodynamically-sorted mm-size particles (generically "chondrules"). These planetesimal sizes are in general agreement with the currently observed asteroid mass peak near 100km diameter, which has been identified as a "fossil" property of the pre-erosion, pre-depletion population. We extend our primary accretion theory to make predictions for outer solar system planetesimals, which may also have a preferred size in the 100km diameter range. We estimate formation rates of planetesimals and assess the conditions needed to match estimates of both asteroid and Kuiper Belt Object (KBO) formation rates. For nebula parameters that satisfy observed mass accretion rates of Myr-old protoplanetary nebulae, the scenario is roughly consistent with not only the "fossil" sizes of the asteroids, and their estimated production rates, but also with the observed spread in formation ages of chondrules in a given chondrite, and with a tolerably small radial diffusive mixing during this time between formation and accretion (the model naturally helps explain the peculiar size distribution of chondrules within such objects). The scenario also produces 10-100km diameter primary KBOs. The optimum range of parameters, however, represents a higher gas density and fractional abundance of solids, and a smaller difference between keplerian and pressure-supported orbital velocities, than "canonical" models of the solar nebula. We discuss several potential explanations for these differences.Comment: Icarus, in pres
    corecore