312 research outputs found
Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation.
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative
disorder characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To investigate SCA1 pathogenesis and to gain insight into the function of the SCA1 gene product ataxin-1, a novel protein without homology to previously described proteins, we generated mice with a targeted deletion in the murine Sca1 gene. Mice lacking ataxin-1 are viable, fertile, and do not show any evidence of ataxia or neurodegeneration. However, Sca1 null mice demonstrate decreased exploratory behavior, pronounced deficits in the spatial version of the Morris water maze test, and impaired performance on the rotating rod apparatus. Furthermore, neurophysiological studies performed in area CA1 of the hippocampus reveal decreased paired-pulse facilitation in Sca1 null mice, whereas long-term and post-tetanic potentiations are normal.
These findings demonstrate that SCA1 is not caused by loss of function of ataxin-1 and point to the possible role of ataxin-1 in learning and memory
Translational switch for long-term maintenance of synaptic plasticity
Memory can last a lifetime, yet synaptic contacts that contribute to the storage of memory are composed of proteins that have much shorter lifetimes. A physiological model of memory formation, long-term potentiation (LTP), has a late protein-synthesis-dependent phase (L-LTP) that can last for many hours in slices or even for days in vivo. Could the activity-dependent synthesis of new proteins account for the persistence of L-LTP and memory? Here, we examine the proposal that a self-sustaining regulation of translation can form a bistable switch that can persistently regulate the on-site synthesis of plasticity-related proteins. We show that an αCaMKII–CPEB1 molecular pair can operate as a bistable switch. Our results imply that L-LTP should produce an increase in the total amount of αCaMKII at potentiated synapses. This study also proposes an explanation for why the application of protein synthesis and αCaMKII inhibitors at the induction and maintenance phases of L-LTP result in very different outcomes
Assessing Matched Normal and Tumor Pairs in Next-Generation Sequencing Studies
Next generation sequencing technology has revolutionized the study of cancers. Through matched normal-tumor pairs, it is now possible to identify genome-wide germline and somatic mutations. The generation and analysis of the data requires rigorous quality checks and filtering, and the current analytical pipeline is constantly undergoing improvements. We noted however that in analyzing matched pairs, there is an implicit assumption that the sequenced data are matched, without any quality check such as those implemented in association studies. There are serious implications in this assumption as identification of germline and rare somatic variants depend on the normal sample being the matched pair. Using a genetics concept on measuring relatedness between individuals, we demonstrate that the matchedness of tumor pairs can be quantified and should be included as part of a quality protocol in analysis of sequenced data. Despite the mutation changes in cancer samples, matched tumor-normal pairs are still relatively similar in sequence compared to non-matched pairs. We demonstrate that the approach can be used to assess the mutation landscape between individuals
Analysis of human meiotic recombination events with a parent-sibling tracing approach
<p>Abstract</p> <p>Background</p> <p>Meiotic recombination ensures that each child inherits distinct genetic materials from each parent, but the distribution of crossovers along meiotic chromosomes remains difficult to identify. In this study, we developed a parent-sibling tracing (PST) approach from previously reported methods to identify meiotic crossover sites of GEO GSE6754 data set. This approach requires only the single nucleotide polymorphism (SNP) data of the pedigrees of both parents and at least two of children.</p> <p>Results</p> <p>Compared to other SNP-based algorithms (identity by descent or pediSNP), fewer uninformative SNPs were derived with the use of PST. Analysis of a GEO GSE6754 data set containing 2,145 maternal and paternal meiotic events revealed that the pattern and distribution of paternal and maternal recombination sites vary along the chromosomes. Lower crossover rates near the centromeres were more prominent in males than in females. Based on analysis of repetitive sequences, we also showed that recombination hotspots are positively correlated with SINE/MIR repetitive elements and negatively correlated with LINE/L1 elements. The number of meiotic recombination events was positively correlated with the number of shorter tandem repeat sequences.</p> <p>Conclusions</p> <p>The advantages of the PST approach include the ability to use only two-generation pedigrees with two siblings and the ability to perform gender-specific analyses of repetitive elements and tandem repeat sequences while including fewer uninformative SNP regions in the results.</p
Tau Reduction Does Not Prevent Motor Deficits in Two Mouse Models of Parkinson's Disease
Many neurodegenerative diseases are increasing in prevalence and cannot be prevented or cured. If they shared common pathogenic mechanisms, treatments targeting such mechanisms might be of benefit in multiple conditions. The tau protein has been implicated in the pathogenesis of diverse neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Tau reduction prevents cognitive deficits, behavioral abnormalities and other pathological changes in multiple AD mouse models. Here we examined whether tau reduction also prevents motor deficits and pathological alterations in two mouse models of PD, generated by unilateral striatal injection of 6-hydroxydopamine (6-OHDA) or transgene-mediated neuronal expression of human wildtype α-synuclein. Both models were evaluated on Tau+/+, Tau+/– and Tau–/– backgrounds in a variety of motor tests. Tau reduction did not prevent motor deficits caused by 6-OHDA and slightly worsened one of them. Tau reduction also did not prevent 6-OHDA-induced loss of dopaminergic terminals in the striatum. Similarly, tau reduction did not prevent motor deficits in α-synuclein transgenic mice. Our results suggest that tau has distinct roles in the pathogeneses of AD and PD and that tau reduction may not be of benefit in the latter condition
NMDA receptors and BAX are essential for Aβ impairment of LTP
Accumulation of amyloid-β (Aβ) is a hallmark of Alzheimer’s disease, a neurodegenerative disorder in which synapse loss and dysfunction are early features. Acute exposure of hippocampal slices to Aβ leads to changes in synaptic plasticity, specifically reduced long-term potentiation (LTP) and enhanced long-term depression (LTD), with no change in basal synaptic transmission. We also report here that D-AP5, a non-selective NMDA receptor antagonist, completely prevented Aβ-mediated inhibition of LTP in area CA1 of the hippocampus. Ro25-6981, an antagonist selective for GluN2B (NR2B) NMDA receptors, only partially prevented this Aβ action, suggesting that GluN2A and GluN2B receptors may both contribute to Aβ suppression of LTP. The effect of Aβ on LTP was also examined in hippocampal slices from BAX −/− mice and wild-type littermates. Aβ failed to block LTP in hippocampal slices from BAX −/− mice, indicating that BAX is essential for Aβ inhibition of LTP
Inference of Relationships in Population Data Using Identity-by-Descent and Identity-by-State
It is an assumption of large, population-based datasets that samples are annotated accurately whether they correspond to known relationships or unrelated individuals. These annotations are key for a broad range of genetics applications. While many methods are available to assess relatedness that involve estimates of identity-by-descent (IBD) and/or identity-by-state (IBS) allele-sharing proportions, we developed a novel approach that estimates IBD0, 1, and 2 based on observed IBS within windows. When combined with genome-wide IBS information, it provides an intuitive and practical graphical approach with the capacity to analyze datasets with thousands of samples without prior information about relatedness between individuals or haplotypes. We applied the method to a commonly used Human Variation Panel consisting of 400 nominally unrelated individuals. Surprisingly, we identified identical, parent-child, and full-sibling relationships and reconstructed pedigrees. In two instances non-sibling pairs of individuals in these pedigrees had unexpected IBD2 levels, as well as multiple regions of homozygosity, implying inbreeding. This combined method allowed us to distinguish related individuals from those having atypical heterozygosity rates and determine which individuals were outliers with respect to their designated population. Additionally, it becomes increasingly difficult to identify distant relatedness using genome-wide IBS methods alone. However, our IBD method further identified distant relatedness between individuals within populations, supported by the presence of megabase-scale regions lacking IBS0 across individual chromosomes. We benchmarked our approach against the hidden Markov model of a leading software package (PLINK), showing improved calling of distantly related individuals, and we validated it using a known pedigree from a clinical study. The application of this approach could improve genome-wide association, linkage, heterozygosity, and other population genomics studies that rely on SNP genotype data
β-Amyloid 25-35 Peptide Reduces the Expression of Glutamine Transporter SAT1 in Cultured Cortical Neurons
β-Amyloid (Aβ) peptides may cause malfunction and death of neurons in Alzheimer’s disease. We investigated the effect of Aβ on key transporters of amino acid neurotransmission in cells cultured from rat cerebral cortex. The cultures were treated with Aβ(25-35) at 3 and 10 μM for 12 and 24 h followed by quantitative analysis of immunofluorescence intensity. In mixed neuronal–glial cell cultures (from P1 rats), Aβ reduced the concentration of system A glutamine transporter 1 (SAT1), by up to 50% expressed relative to the neuronal marker microtubule-associated protein 2 (MAP2) in the same cell. No significant effects were detected on vesicular glutamate transporters VGLUT1 or VGLUT2 in neurons, or on glial system N glutamine transporter 1 (SN1). In neuronal cell cultures (from E18 rats), Aβ(25-35) did not reduce SAT1 immunoreactivity, suggesting that the observed effect depends on the presence of astroglia. The results indicate that Aβ may impair neuronal function and transmitter synthesis, and perhaps reduce excitotoxicity, through a reduction in neuronal glutamine uptake
Decrease in the production of beta-amyloid by berberine inhibition of the expression of beta-secretase in HEK293 cells
<p>Abstract</p> <p>Background</p> <p>Berberine (BER), the major alkaloidal component of <it>Rhizoma coptidis</it>, has multiple pharmacological effects including inhibition of acetylcholinesterase, reduction of cholesterol and glucose levels, anti-inflammatory, neuroprotective and neurotrophic effects. It has also been demonstrated that BER can reduce the production of beta-amyloid<sub>40/42</sub>, which plays a critical and primary role in the pathogenesis of Alzheimer's disease. However, the mechanism by which it accomplishes this remains unclear.</p> <p>Results</p> <p>Here, we report that BER could not only significantly decrease the production of beta-amyloid<sub>40/42 </sub>and the expression of beta-secretase (BACE), but was also able to activate the extracellular signal-regulated kinase1/2 (ERK1/2) pathway in a dose- and time-dependent manner in HEK293 cells stably transfected with APP695 containing the Swedish mutation. We also find that U0126, an antagonist of the ERK1/2 pathway, could abolish (1) the activation activity of BER on the ERK1/2 pathway and (2) the inhibition activity of BER on the production of beta-amyloid<sub>40/42 </sub>and the expression of BACE.</p> <p>Conclusion</p> <p>Our data indicate that BER decreases the production of beta-amyloid<sub>40/42 </sub>by inhibiting the expression of BACE via activation of the ERK1/2 pathway.</p
COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo
Collagen XXV alpha 1 (COL25A1) is a collagenous type II transmembrane protein purified from senile plaques of Alzheimer’s disease (AD) brains. COL25A1 alleles have been associated with increased risk for AD in a Swedish population. COL25A1 is specifically expressed in neurons and binds to aggregated Aβ in vitro. However, its contribution to the pathogenesis of AD and in vivo function are unknown. Here, we report that over-expression of COL25A1 in transgenic mice increases p35/p25 and β-site APP-cleaving enzyme 1 (BACE1) levels, facilitates intracellular aggregation and extracellular matrix deposits of Aβ, and causes synaptophysin loss and astrocyte activation. COL25A1 mice displayed reduced anxiety-like behavior in elevated plus maze and open field tests and significantly slower swimming speed in Morris water maze. In stable cell lines, motifs in noncollagenous domains of COL25A1 were important for the induction of BACE1 expression. These findings demonstrate that COL25A1 leads to AD-like pathology in vivo. Modulation of COL25A1 function may represent an alternative therapeutic intervention for AD
- …