15 research outputs found

    Bicuspid stenotic aortic valves: clinical characteristics and morphological assessment using MRI and echocardiography

    Get PDF
    Background Bicuspid aortic valve (BAV) is one of the most common congenital heart defects with a population prevalence of 0.5% to 1.3%. Identifying patients with BAV is clinically relevant because BAV is associated with aortic stenosis, endocarditis and ascending aorta pathology. Methods and Results Patients with severe aortic stenosis necessitating aortic valve replacement surgery were included in this study. All dissected aortic valves Were stored in the biobank of the University Medical Centre Utrecht. Additionally to the morphological assessment of the aortic valve by the surgeon and pathologist, echocardiographic and magnetic resonance imaging (MRI) images were evaluated. A total of 80 patients were included of whom 32 (40%) were diagnosed with BAV by the surgeon (gold standard). Patients with BAV were significantly younger (55 vs 71 years) and were more frequently male. Notably, a significant difference was found between the surgeon and pathologist in determining valve morphology. MRI was performed in 33% of patients. MRI could assess valve morphology in 96% vs 73% with echocardiography. The sensitivity of MRI for BAV in a population of patients with severe aortic stenosis was higher than echocardiography (75% vs 55%), whereas specificity was better with the latter (91% vs 79%). Typically, the ascending aorta was larger in patients with BAV. Conclusion Among unselected patients with severe aortic valve stenosis, a high percentage of patients with BAV were found. Imaging and assessment of the aortic valve morphology when stenotic is challengin

    Field based speciation of arsenic in UK and Argentinean water samples

    Get PDF
    A field method is reported for the speciation of arsenic in water samples that is simple, rapid, safe to use beyond laboratory environments, and cost effective. The method utilises solid-phase extraction cartridges (SPE) in series for selective retention of arsenic species, followed by elution and measurement of eluted fractions by inductively coupled plasma mass spectrometry (ICP-MS) for “total” arsenic. The method is suitable for on-site separation and preservation of arsenic species from water. Mean percentage accuracies (n = 25) for synthetic solutions of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MA), and dimethylarsinic acid (DMA) containing 10 μg l−1 As, were 98, 101, 94, and 105%, respectively. Data are presented to demonstrate the effect of pH and competing anions on the retention of the arsenic species. The cartridges were tested in the UK and Argentina at sites where arsenic was known to be present in surface and groundwaters, respectively, at elevated concentrations and under challenging matrix conditions. In Argentinean groundwater, 4–20% of speciated arsenic was present as MA and 20–73% as AsIII. In UK surface waters, speciated arsenic was measured as 7–49% MA and 12–42% DMA. Comparative data from the field method using SPE cartridges and the laboratory method using liquid chromatography coupled to ICP-MS for all water samples provided a correlation of greater than 0.999 for AsIII and DMA, 0.991 for MA, and 0.982 for AsV (P < 0.01)

    Arsenic contamination of natural waters in San Juan and La Pampa, Argentina

    Get PDF
    Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MAV) and dimethylarsinic acid (DMAV). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l−1 As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l−1 As. The pH range for the provinces of San Juan (7.2–9.7) and La Pampa (7.0–9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm−1) and TDS (>1,400 mg l−1). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216–224 μg l−1 As to 0.3–0.8 μg l−1 As. Arsenic species for both provinces were predominantly AsIII and AsV. AsIII and AsV concentrations in San Juan ranged from 4–138 μg l−1 to <0.02–22 μg l−1 for surface waters (in the San José de Jáchal region) and 23–346 μg l−1 and 0.04–76 μg l−1 for groundwater, respectively. This translates to a relative AsIII abundance of 69–100% of the total arsenic in surface waters and 32–100% in groundwater. This is unexpected because it is typically thought that in oxidising conditions (surface waters), the dominant arsenic species is AsV. However, data from the SPE methodology suggests that AsIII is the prevalent species in San Juan, indicating a greater influence from reductive processes. La Pampa groundwater had AsIII and AsV concentrations of 5–1,332 μg l−1 and 0.09–592 μg l−1 for EC and 32–242 μg l−1 and 30–277 μg l−1 As for LU, respectively. Detectable levels of MAV were reported in both provinces up to a concentration of 79 μg l−1 (equating to up to 33% of the total arsenic). Previously published literature has focused primarily on the inorganic arsenic species, however this study highlights the potentially significant concentrations of organoarsenicals present in natural waters. The potential for separating and preserving individual arsenic species in the field to avoid transformation during transport to the laboratory, enabling an accurate assessment of in situ arsenic speciation in water supplies is discussed
    corecore