11 research outputs found

    EFFECTIVE DOSE MEASUREMENT FOR CONE BEAM COMPUTED TOMOGRAPHY USING GLASS DOSIMETER

    Get PDF
    During image-guided radiation therapy, the patient is exposed to unwanted radiation from imaging devices built into the medical LINAC. In the present study, the effective dose delivered to a patient from a cone beam computed tomography (CBCT) machine was measured. Absorbed doses in specific organs listed in ICRP Publication 103 were measured with glass dosimeters calibrated with kilovolt (kV) X-rays using a whole body physical phantom for typical radiotherapy sites, including the head and neck, chest, and pelvis. The effective dose per scan for the head and neck, chest, and pelvis were 3.37±0.29, 7.36±0.33, and 4.09±0.29 mSv, respectively. The results highlight the importance of the compensation of treatment dose by managing imaging dose

    Study on the keV neutron capture reaction in

    No full text
    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li(p,n) (p,n) 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the γ \gamma -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the γ \gamma -ray transmission coefficients described by γ \gamma -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results

    A Disposable Photovoltaic Patch Controlling Cellular Microenvironment for Wound Healing

    No full text
    Electrical stimulation (ES) is known to affect the wound healing process by modulating skin cell behaviors. However, the conventional clinical devices that can generate ES for promoting wound healing require patient hospitalization due to large-scale of the extracorporeal devices. Herein, we introduce a disposable photovoltaic patch that can be applied to skin wound sites to control cellular microenvironment for promoting wound healing by generating ES. In vitro experiment results show that exogenous ES could enhance cell migration, proliferation, expression of extracellular matrix proteins, and myoblast differentiation of fibroblasts which are critical for wound healing. Our disposable photovoltaic patches were attached to the back of skin wound induced mice. Our patch successfully provided ES, generated by photovoltaic energy harvested from the organic solar cell under visible light illumination. In vivo experiment results show that the patch promoted cutaneous wound healing via enhanced host-inductive cell proliferation, cytokine secretion, and protein synthesis which is critical for wound healing process. Unlike the current treatments for wound healing that engage passive healing processes and often are unsuccessful, our wearable photovoltaic patch can stimulate regenerative activities of endogenous cells and actively contribute to the wound healing processes

    Measurement of flux-weighted average cross-sections and isomeric yield ratios for

    No full text
    We measured the flux-weighted average cross-sections and the isomeric yield ratios of 99m, g, 100m, g, 101m, g, 102m, gRh in the 103Rh(γ \gamma, xn) reactions with the bremsstrahlung end-point energies of 55 and 60MeV by the activation and the off-line γ \gamma-ray spectrometric technique, using the 100MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The flux-weighted average cross-sections were calculated by using the computer code TALYS 1.6 based on mono-energetic photons, and compared with the present experimental data. The flux-weighted average cross-sections of 103Rh(γ \gamma, xn) reactions in intermediate bremsstrahlung energies are the first time measurement and are found to increase from their threshold value to a particular value, where the other reaction channels open up. Thereafter, it decreases with bremsstrahlung energy due to its partition in different reaction channels. The isomeric yield ratios (IR) of 99m, g, 100m, g, 101m, g, 102m, gRh in the 103Rh(γ \gamma, xn) reactions from the present work were compared with the literature data in the 103Rh(d, x), 102-99Ru(p, x) , 103Rh(α \alpha,α \alphan) , 103Rh(α \alpha, 2p3n) , 102Ru(3He, x), and 103Rh(γ \gamma, xn) reactions. It was found that the IR values of 102, 101, 100, 99Rh in all these reactions increase with the projectile energy, which indicates the role of excitation energy. At the same excitation energy, the IR values of 102, 101, 100, 99Rh are higher in the charged particle-induced reactions than in the photon-induced reaction, which indicates the role of input angular momentum
    corecore