9 research outputs found

    The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS

    No full text
    The determination of the mass transport kinetics of oxide materials for use in electrochemical systems such as fuel cells, sensors and oxygen separators is a significant challenge. Several techniques have been proposed to derive these data experimentally with only the oxygen isotope exchange depth profile technique coupled with secondary ion mass spectrometry (SIMS) providing a direct measure of these kinetic parameters. Whilst this allows kinetic information to be obtained, there is a lack of knowledge of the surface chemistry of these complex processes. The advent of low-energy ion scattering (LEIS) now offers the opportunity of correlating exchange kinetics with chemical processes at materials atomic surfaces, giving unprecedented levels of information on electrochemical systems with isotopic discrimination. Here, the challenges of these techniques, including sample preparation, are discussed and the advantages of the combined approach of SIMS and LEIS illustrated with reference to key literature data

    The Role of Alternative Sigma Factors in Pathogen Virulence

    No full text
    Alternative sigma factors enable bacteria to change the promoter specificity of the core RNA polymerase to enable the expression of genes that give them advantages in particular situations. The number of alternative sigma factors that bacteria produce varies greatly. Some bacteria, particularly those that reside in the soil have genes for multiple sigma factors. The soil living gram positive bacteria Sorangium cellulosum currently holds the record for the number of sigma factor genes at 109. Alternative sigma factors play important roles in the life cycle of many foodborne bacterial pathogens. In this review we will discuss: the structure and function of alternative sigma factors; the different families of alternative sigma factors; their regulation; the role of particular alternative sigma factors and the genes they control in the biology (particularly pathogenesis) of foodborne bacterial pathogens
    corecore