462 research outputs found

    Multidisciplinary Protocol for the Management of Violent Patients and Promotion of Workplace Safety in the Intensive Care Unit

    Get PDF
    Introduction: Workplace violence is a prevalent issue in healthcare, yet limited evidence informs management options to improve workplace safety associated with violent patients and families. Even less is known about reducing violence in intensive care units (ICUs), a healthcare setting that commonly serves patients at high risk of aggressive behaviors. Multifaceted, interdisciplinary and institution-specific interventions are recommended to address workplace safety. Methods: Our institution developed four interventions to address the issue of violent patients in our ICUs. The interventions included a Disruptive/Aggressive Behavior Algorithm, Code Grey Box, Rapid Sedation Protocol and a Customer Service Representative. Security calls to the ICUs were the primary measure used to assess effectiveness of the interventions. Results: Security calls to the ICUs decreased from October 2013 to August 2016, after the implementation of the four interventions. Discussion: The implementation of four interventions decreased the calls to security, despite encouraging early escalation to security for potentially violent patients. The trend may represent a decrease in violent episodes, increased staff confidence in managing violent patients, or improved early recognition of high-risk patients. Conclusions: Violent patients and families in the ICU is an understudied workplace safety issue. Our institution used a multifaceted interdisciplinary approach to create and implement interventions which led to a reduction in the need for security personnel response to threats of ICU staff safety. These interventions serve as a guide for other institutions with the aim to decrease workplace violence and promote workplace safety

    Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process

    Get PDF
    International audienceAbstractCurrent treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi

    Get PDF
    Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals

    Mini-open anterior spine surgery for anterior lumbar diseases

    Get PDF
    Minimally invasive surgeries including endoscopic surgery and mini-open surgery are current trend of spine surgery, and its main advantages are shorter recovery time and cosmetic benefits, etc. However, mini-open surgery is easier and less technique demanding than endoscopic surgery. Besides, anterior spinal fusion is better than posterior spinal fusion while considering the physiological loading, back muscle function, etc. Therefore, we aimed to introduce the modified “mini-open anterior spine surgery” (MOASS) and to evaluate the feasibility, effectiveness and safety in the treatment of various anterior lumbar diseases with this technique. A total of 61 consecutive patients (46 female, 15 male; mean age 58.2 years) from 1997 to 2004 were included in this study, with an average follow-up of 24–52 (mean 43) months. The disease entities included vertebral fracture (20), failed back surgery (13), segmental instability or spondylolisthesis (10), infection (8), herniated disc (5), undetermined lesion for biopsy (4), and hemivertebra (1). Lesions involved 13 cases at T12–L1, 18 at L1–L2, 18 at L2–L3, 22 at L3–L4 and 11 at L4–L5 levels. All patients received a single stage anterior-only procedure for their anterior lumbar disease. We used the subjective clinical results, Oswestry disability index, fusion rate, and complications to evaluate our clinical outcome. Most patients (91.8%) were subjectively satisfied with the surgery and had good-to-excellent outcomes. Mean operation time was 85 (62–124) minutes, and mean blood loss was 136 (minimal-250) ml in the past 6 years. Hospital stay ranged from 4–26 (mean 10.6) days. Nearly all cases had improved back pain (87%), physical function (90%) and life quality (85%). Most cases (95%) achieved solid or probable solid bony fusion. There were no major complications. Therefore, MOASS is feasible, effective and safe for patients with various anterior lumbar diseases

    Avoiding Dangerous Missense: Thermophiles Display Especially Low Mutation Rates

    Get PDF
    Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate

    Effective implementation of research into practice: an overview of systematic reviews of the health literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gap between research findings and clinical practice is well documented and a range of interventions has been developed to increase the implementation of research into clinical practice.</p> <p>Findings</p> <p>A review of systematic reviews of the effectiveness of interventions designed to increase the use of research in clinical practice. A search for relevant systematic reviews was conducted of Medline and the Cochrane Database of Reviews 1998-2009. 13 systematic reviews containing 313 primary studies were included. Four strategy types are identified: audit and feedback; computerised decision support; opinion leaders; and multifaceted interventions. Nine of the reviews reported on multifaceted interventions. This review highlights the small effects of single interventions such as audit and feedback, computerised decision support and opinion leaders. Systematic reviews of multifaceted interventions claim an improvement in effectiveness over single interventions, with effect sizes ranging from small to moderate. This review found that a number of published systematic reviews fail to state whether the recommended practice change is based on the best available research evidence.</p> <p>Conclusions</p> <p>This overview of systematic reviews updates the body of knowledge relating to the effectiveness of key mechanisms for improving clinical practice and service development. Multifaceted interventions are more likely to improve practice than single interventions such as audit and feedback. This review identified a small literature focusing explicitly on getting research evidence into clinical practice. It emphasizes the importance of ensuring that primary studies and systematic reviews are precise about the extent to which the reported interventions focus on changing practice based on research evidence (as opposed to other information codified in guidelines and education materials).</p

    The Major Roles of DNA Polymerases Epsilon and Delta at the Eukaryotic Replication Fork Are Evolutionarily Conserved

    Get PDF
    Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polδ-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that Polδ is primarily involved in lagging strand replication. Second, in strains encoding a polε-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that Polε is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of Polδ and Polε at the eukaryotic replication fork are evolutionarily conserved
    corecore