12 research outputs found

    Lymphatic Filariasis Control in Tanzania: Effect of Six Rounds of Mass Drug Administration with Ivermectin and Albendazole on Infection and Transmission.

    Get PDF
    Control of lymphatic filariasis (LF) in most countries of sub-Saharan Africa is based on annual mass drug administration (MDA) with a combination of ivermectin and albendazole, in order to interrupt transmission. We present findings from a detailed study on the effect of six rounds of MDA with this drug combination as implemented by the National Lymphatic Filariasis Elimination Programme (NLFEP) in a highly endemic rural area of north-eastern Tanzania.\ud The effect of treatment on transmission and human infection was monitored in a community- and a school-based study during an 8-year period (one pre-intervention and 7 post-intervention years) from 2003 to 2011. Before intervention, 24.5% of the community population had microfilariae (mf) in the blood, 53.3% had circulating filarial antigens (CFA) and 78.9% had specific antibodies to the recombinant filarial antigen Bm14. One year after the sixth MDA, these values had decreased considerably to 2.7%, 19.6% and 27.5%, respectively. During the same period, the CFA prevalence among new intakes of Standard 1 pupils in 10 primary schools decreased from 25.2% to 5.6%. In line with this, transmission by the three vectors (Anopheles gambiae, An. funestus and Culex quinquefasciatus) as determined by dissection declined sharply (overall vector infectivity rate by 99.3% and mean monthly transmission potential by 99.2% between pre-intervention and fifth post-intervention period). A major shift in vector species composition, from predominantly anopheline to almost exclusively culicine was observed over the years. This may be largely unrelated to the MDAs but may have important implications for the epidemiology of LF in the area. Six MDAs caused considerable decrease in all the measured indices for transmission and human infection. In spite of this, indices were still relatively high in the late period of the study, and it may take a long time to reach the recommended cut-off levels for interruption of transmission unless extra efforts are made. These should include increased engagement of the target population in the control activities, to ensure higher treatment coverage. It is expected that the recent initiative to distribute insecticide impregnated bed nets to every household in the area will also contribute towards reaching the goal of successful LF elimination

    Translating preventive chemotherapy prevalence thresholds for Schistosoma mansoni from the Kato-Katz technique into the point-of-care circulating cathodic antigen diagnostic test

    Get PDF
    Background Intervention guidelines against Schistosoma mansoni are based on the Kato-Katz technique. However, Kato-Katz thick smears show low sensitivity, especially for light-intensity infections. The point-of-care circulating cathodic antigen (POC-CCA) is a promising rapid diagnostic test detecting antigen output of living worms in urine and results are reported as trace, 1+, 2+, and 3+. The use of POC-CCA for schistosomiasis mapping, control, and surveillance requires translation of the Kato-Katz prevalence thresholds into POC-CCA relative treatment cut-offs. Furthermore, the infection status of egg-negative but antigen-positive individuals and the intensity-dependent sensitivity of POC-CCA should be estimated to determine its suitability for verification of disease elimination efforts. Methodology We used data from settings in Africa and the Americas characterized by a wide range of S. mansoni endemicity. We estimated infection intensity-dependent sensitivity and specificity of each test at the unit of the individual, using a hierarchical Bayesian egg-count model that removes the need to define a ‘gold’ standard applied to data with multiple Kato-Katz thick smears and POC-CCA urine cassette tests. A simulation study was carried out based on the model estimates to assess the relation of the two diagnostic tests for different endemicity scenarios. Principal findings POC-CCA showed high specificity (> 95%), and high sensitivity (> 95%) for moderate and heavy infection intensities, and moderate sensitivity (> 75%) for light infection intensities, and even for egg-negative but antigen-positive infections. A 10% duplicate slide Kato-Katz thick smear prevalence corresponded to a 15–40% prevalence of ≥ trace-positive POC-CCA, and 10–20% prevalence of ≥ 1+ POC-CCA. The prevalence of ≥ 2+ POC-CCA corresponded directly to single slide Kato-Katz prevalence for all prevalence levels. Conclusions/significance The moderate sensitivity of POC-CCA, even for very light S. mansoni infections where the sensitivity of Kato-Katz is very low, and the identified relationship between Kato-Katz and POC-CCA prevalence thresholds render the latter diagnostic tool useful for surveillance and initial estimation of elimination of S. mansoni. For prevalence below 10% based on a duplicate slide Kato-Katz thick smear, we suggest using POC-CCA including trace results to evaluate treatment needs and propose new intervention thresholds that need to be validated in different settings

    The argument for integrating vector control with multiple drug administration campaigns to ensure elimination of lymphatic filariasis

    Get PDF
    BACKGROUND: There is a danger that mass drug administration campaigns may fail to maintain adequate treatment coverage to achieve lymphatic filariasis elimination. Hence, additional measures to suppress transmission might be needed to ensure the success of the Global Program for the Elimination of Lymphatic Filariasis. DISCUSSION: Vector control successfully eliminated lymphatic filariasis when implemented alone or with mass drug administration. Challenges to lymphatic filariasis elimination include uncertainty of the exact level and duration of microfilarial suppression required for elimination, the mobility of infected individuals, consistent non-participation of some infected individuals with mass drug administration, the possible development of anti-filarial drug resistance and treatment strategies in areas co-endemic with loasis. Integration of vector control with mass drug administration can address some of these challenges. The potential benefits of vector control would include: (1) the ability to suppress filariasis transmission without the need to identify all individual 'foci of infection'; (2) minimizing the risk of reestablishment of transmission from imported microfilaria positive individuals; and (3) decreasing the risk of dengue or malaria transmission where, respectively, Aedes or Anopheles are lymphatic filariasis vectors. SUMMARY: With adequate sustained treatment coverage, mass drug administration should meet the criteria for elimination of lymphatic filariasis. However, it may be difficult to sustain sufficiently high mass drug administration coverage to achieve lymphatic filariasis elimination in some areas, particularly, where Aedes species are the vectors. Since vector control was effective in controlling and even eliminating lymphatic filariasis transmission, integration of vector control with mass drug administration will ensure the sustainability of transmission suppression and thereby better ensure the success of national filariasis elimination programs. Although trials of some vector control interventions are needed, proven vector control strategies are ready for immediate integration with mass drug administration for many important vectors. Vector control is the only presently available additional lymphatic filariasis control measure with the potential for immediate implementation

    The impact of mass drug administration and long-lasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda

    Get PDF
    BACKGROUND: Lymphatic filariasis (LF) in Uganda is caused by Wuchereria bancrofti and transmitted by anopheline mosquitoes. The mainstay of elimination has been annual mass drug administration (MDA) with ivermectin and albendazole, targeted to endemic districts, but has been sporadic and incomplete in coverage. Vector control could potentially contribute to reducing W. bancrofti transmission, speeding up progress towards elimination. To establish whether the use of long-lasting insecticidal nets (LLINs) can contribute towards reducing transmission of W. bancrofti in a setting with ongoing MDA, a study was conducted in an area of Uganda highly endemic for both LF and malaria. Baseline parasitological and entomological assessments were conducted in 2007, followed by high-coverage LLIN distribution. Net use and entomological surveys were carried out after one year, and final parasitological and entomological evaluations were conducted in 2010. Three rounds of MDA had taken place before the study commenced, with a further three rounds completed during the course of the study. RESULTS: In 2007, rapid mapping indicated 22.3% of schoolchildren were W. bancrofti antigen positive, and a baseline survey during the same year found age-adjusted microfilaraemia prevalence was 3.7% (95% confidence interval (CI): 2.6-5.3%). In 2010, age-adjusted microfilaraemia prevalence had fallen to 0.4%, while antigenaemia rates were 0.2% in children < 5 years and 6.0% in ≥ 5 years. In 2010, universal coverage of mosquito nets in a household was found to be protective against W. bancrofti antigen (odds ratio = 0.44, 95% CI: 0.22-0.89). Prevalence of W. bancrofti larvae in anopheline mosquitoes had decreased significantly between the 2007 and 2010 surveys, but there was an apparent increase in vector densities. CONCLUSION: A marked reduction in W. bancrofti infection and infectivity in humans was observed in the study area, where both MDA and LLINs were used to reduce transmission. The extent to which LLINs contributed to this decline is equivocal, however. Further work investigating the impact of vector control on anopheline-transmitted LF in an endemic area not benefitting from MDA would be valuable to determine the effect of such interventions on their own

    Neglected Tropical Diseases of the Middle East and North Africa: Review of Their Prevalence, Distribution, and Opportunities for Control

    Get PDF
    The neglected tropical diseases (NTDs) are highly endemic but patchily distributed among the 20 countries and almost 400 million people of the Middle East and North Africa (MENA) region, and disproportionately affect an estimated 65 million people living on less than US$2 per day. Egypt has the largest number of people living in poverty of any MENA nation, while Yemen has the highest prevalence of people living in poverty. These two nations stand out for having suffered the highest rates of many NTDs, including the soil-transmitted nematode infections, filarial infections, schistosomiasis, fascioliasis, leprosy, and trachoma, although they should be recognized for recent measures aimed at NTD control. Leishmaniasis, especially cutaneous leishmaniasis, is endemic in Syria, Iran, Iraq, Libya, Morocco, and elsewhere in the region. Both zoonotic (Leishmania major) and anthroponotic (Leishmania tropica) forms are endemic in MENA in rural arid regions and urban regions, respectively. Other endemic zoonotic NTDs include cystic echinococcosis, fascioliasis, and brucellosis. Dengue is endemic in Saudi Arabia, where Rift Valley fever and Alkhurma hemorrhagic fever have also emerged. Great strides have been made towards elimination of several endemic NTDs, including lymphatic filariasis in Egypt and Yemen; schistosomiasis in Iran, Morocco, and Oman; and trachoma in Morocco, Algeria, Iran, Libya, Oman, Saudi Arabia, Tunisia, and the United Arab Emirates. A particularly noteworthy achievement is the long battle waged against schistosomiasis in Egypt, where prevalence has been brought down by regular praziquantel treatment. Conflict and human and animal migrations are key social determinants in preventing the control or elimination of NTDs in the MENA, while local political will, strengthened international and intersectoral cooperative efforts for surveillance, mass drug administration, and vaccination are essential for elimination

    Evaluation, Validation, and Recognition of the Point-of-Care Circulating Cathodic Antigen, Urine-Based Assay for Mapping Schistosoma mansoni Infections

    Get PDF
    Efforts to control Schistosoma mansoni infection depend on the ability of programs to effectively detect and quantify infection levels and adjust programmatic approaches based on these levels and program goals. One of the three major objectives of the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) has been to develop and/or evaluate tools that would assist Neglected Tropical Disease program managers in accomplishing this fundamental task. The advent of a widely available point-of-care (POC) assay to detect schistosome circulating cathodic antigen (CCA) in urine with a rapid diagnostic test (the POC-CCA) in 2008 led SCORE and others to conduct multiple evaluations of this assay, comparing it with the Kato–Katz (KK) stool microscopy assay—the standard used for more than 45 years. This article describes multiple SCORE-funded studies comparing the POC-CCA and KK assays, the pros and cons of these assays, the use of the POC-CCA assay for mapping of S. mansoni infections in areas across the spectrum of prevalence levels, and the validation and recognition that the POC-CCA, although not infallible, is a highly useful tool to detect low-intensity infections in low-to-moderate prevalence areas. Such an assay is critical, as control programs succeed in driving down prevalence and intensity and seek to either maintain control or move to elimination of transmission of S. mansoni
    corecore