5 research outputs found

    Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer

    No full text
    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25?mm3 with the consequent median value for metal-on-metal taper loss being 1.75?mm3. This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59?mm3. Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery. AB - There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25?mm3 with the consequent median value for metal-on-metal taper loss being 1.75 mm3. This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm3. Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery

    Evidence based recommendations for reducing head-neck taper connection fretting corrosion in hip replacement prostheses

    No full text
    © 2017 Wichtig Publishing. Introduction: This systematic review seeks to summarise the published studies investigating prosthetic design, manufacture and surgical technique’s effect on fretting corrosion at the head-neck taper connection, and provide clinical recommendations to reduce its occurrence. Methods: PubMed, MEDLINE and EMBASE electronic databases were searched using the terms taper, trunnion, cone and head-neck junction. Articles investigating prosthetic design, manufacture and surgical technique’s effect on fretting corrosion were retrieved, reviewed and graded according to OCEBM levels of evidence and grades of recommendation. Results: The initial search yielded 1,224 unique articles, and 91 were included in the analysis. Conclusions: There is fair evidence to recommend against the use of high offset femoral heads, larger diameter femoral heads, and to pay particular consideration to fretting corrosion’s progression with time and risk with heavier or more active patients. Particular to metal-on-metal hip prostheses, there is fair evidence to recommend positioning the acetabular component to minimise edge loading. Particular to metal-on-polyethylene hip prostheses, there is fair evidence to recommend the use of ceramic femoral heads, against use of cast cobalt alloy femoral heads, and against use of low flexural rigidity femoral stems. Evidence related to taper connection design is largely conflicting or inconclusive. Head-neck taper connection fretting corrosion is a multifactorial problem. Strict adherence to the guidelines presented herein does not eliminate the risk. Prosthesis selection is critical, and well-controlled studies to identify each design parameter’s relative contribution to head-neck taper connection fretting corrosion are required
    corecore