14 research outputs found

    The catalytic role of uranyl in formation of polycatechol complexes

    Get PDF
    To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization

    Tracing of aerosol sources in an urban environment using chemical, Sr isotope, and mineralogical characterization

    No full text
    In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM2.5) was sampled for 17 months at an urban location in the Western European Coast. The PM2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope (87Sr/86Sr) composition. Organic matter dominates the identifiable urban PM2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87Sr/86Sr ratios were measured on both the labile and residual PM2.5 fractions as well as on the bulk PM2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87Sr/86Sr ratios are comparable to that of seawater. The 87Sr/86Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period

    Possibilities and Limitations of Computer-Assisted Method Development in HILIC: A Case Study

    Full text link
    peer reviewedIn the present study, we investigated the possibilities and limitations of computer-assisted method development (CAMD) for the HILIC separation optimization of a mixture of 13 isomeric hydroxy- and aminobenzoic acids on a ZIC-HILIC column. The isocratically obtained Neue and Kuss retention parameters enabled the accurate gradient retention modeling for peaks eluting well within the gradient (mean error of 2.7 %). The prediction errors for peaks eluting at the end of the gradient could be reduced from 8.8 to 6.1 % by implementing the isocratic regime after the gradient into the expression for the gradient retention factor. The prediction of the corresponding peak widths improved significantly for certain compounds and gradient profiles using individual gradient N values for each compound compared to employing a single N value for all compounds and gradient profiles. Two gradient optimization strategies (constructing the Rs map based on individual retention modeling and predictive elution stretching and shifting, PEWS2) resulted in a reasonable separation of the challenging mixture of 13 isomeric hydroxy- and aminobenzoic acids on the ZIC-HILIC column. Overall, the optimization was limited by the steep decrease in N (dropping to the isocratic N value) and corresponding increase in peak width when increasing the gradient time. The discrimination factors d0 were used to assess the resolution between peaks varying widely in height. The best separation was found to be obtained via the PEWS2 approach. Both the individual retention modeling and PEWS2 strategies corresponded to a total instrument time less than 12 h (including equilibration). Finally, it was found that the salt concentration had a significant effect on both the retention and the peak shape of the compounds, resulting in a small “solution domain” at 10 mM. Coupled columns with higher efficiencies are suggested to improve the resolution and robustness of the separation. © 2016 Springer-Verlag Berlin Heidelber
    corecore