222 research outputs found
Rats distinguish between absence of events and lack of evidence in contingency learning.
The goal of three experiments was to study whether rats are aware of the difference between absence of events and lack of evidence. We used a Pavlovian extinction paradigm in which lights consistently signaling sucrose were suddenly paired with the absence of sucrose. The crucial manipulation involved the absent outcomes in the extinction phase. Whereas in the Cover conditions, access to the drinking receptacle was blocked by a metal plate, in the No Cover conditions, the drinking receptacle was accessible. The Test phase showed that in the Cover conditions, the measured expectancies of sucrose were clearly at a higher level than in the No Cover conditions. We compare two competing theories potentially explaining the findings. A cognitive theory interprets the observed effect as evidence that the rats were able to understand that the cover blocked informational access to the outcome information, and therefore the changed learning input did not necessarily signify a change of the underlying contingency in the world. An alternative associationist account, renewal theory, might instead explain the relative sparing of extinction in the Cover condition as a consequence of context change. We discuss the merits of both theories as accounts of our data and conclude that the cognitive explanation is in this case preferred
Serial Killing of Tumor Cells by Human Natural Killer Cells – Enhancement by Therapeutic Antibodies
BACKGROUND: Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of ‘exhausted’ NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. CONCLUSION/SIGNIFICANCE: Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies
Wake Development behind Paired Wings with Tip and Root Trailing Vortices: Consequences for Animal Flight Force Estimates
Recent experiments on flapping flight in animals have shown that a variety of unrelated species shed a wake behind left and right wings consisting of both tip and root vortices. Here we present an investigation using Particle Image Velocimetry (PIV) of the behaviour and interaction of trailing vortices shed by paired, fixed wings that simplify and mimic the wake of a flying animal with a non-lifting body. We measured flow velocities at five positions downstream of two adjacent NACA 0012 aerofoils and systematically varied aspect ratio, the gap between the wings (corresponding to the width of a non-lifting body), angle of attack, and the Reynolds number. The range of aspect ratios and Reynolds number where chosen to be relevant to natural fliers and swimmers, and insect flight in particular. We show that the wake behind the paired wings deformed as a consequence of the induced flow distribution such that the wingtip vortices convected downwards while the root vortices twist around each other. Vortex interaction and wake deformation became more pronounced further downstream of the wing, so the positioning of PIV measurement planes in experiments on flying animals has an important effect on subsequent force estimates due to rotating induced flow vectors. Wake deformation was most severe behind wings with lower aspect ratios and when the distance between the wings was small, suggesting that animals that match this description constitute high-risk groups in terms of measurement error. Our results, therefore, have significant implications for experimental design where wake measurements are used to estimate forces generated in animal flight. In particular, the downstream distance of the measurement plane should be minimised, notwithstanding the animal welfare constraints when measuring the wake behind flying animals
Sour Ageusia in Two Individuals Implicates Ion Channels of the ASIC and PKD Families in Human Sour Taste Perception at the Anterior Tongue
BACKGROUND:The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. METHODS AND FINDINGS:Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. CONCLUSIONS:These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts") suggests a cell lineage for sour that is independent of the other taste modalities
STAT-1 decoy oligodeoxynucleotide inhibition of acute rejection in mouse heart transplants
During acute rejection of cardiac transplants endothelial cell–leukocyte interaction fuelled by co-stimulatory molecules like CD40/CD154 may ultimately lead to graft loss. One key player in up-regulating the expression of such pro-inflammatory gene products is the interferon-γ-dependent transcription factor STAT-1. Hence down-regulating interferon-γ-stimulated pro-inflammatory gene expression in the graft endothelial cells by employing a decoy oligodeoxynucleotide (dODN) neutralising STAT-1 may protect the graft. To verify this hypothesis, heterotopic mouse heart transplantation was performed in the allogeneic B10.A(2R) to C57BL/6 and syngeneic C57BL/6 to C57BL/6 strain combination without immunosuppression. Graft vessels were pre-treated with STAT-1 dODN, mutant control ODN (10 μM each) or vehicle (Ringer solution). Cellular rejection (vascular and interstitial component) was graded histologically and CD40, ICAM-1, VCAM-1, MCP-1, E-selectin and RANTES expression in the graft monitored by real time PCR 24 h and 9 days post-transplantation. Nine days after transplantation both rejection scores were significantly diminished by 85 and 70%, respectively, in STAT-1 dODN-treated allografts as compared to mutant control ODN-treated allografts. According to immunohistochemistry analysis, this was accompanied by a reduced infiltration of monocyte/macrophages and T cells into the graft myocardium. In addition, pro-inflammatory gene expression was strongly impaired by more than 80% in STAT-1 dODN-treated allografts 24 h post-transplantation but not in mutant control ODN or vehicle-treated allografts. This inhibitory effect on pro-inflammatory gene expression was no longer detectable 9 days post-transplantation. Single periprocedural treatment with a STAT-1 dODN thus effectively reduces cellular rejection in mouse heart allografts. This effect is associated both with an early decline in pro-inflammatory gene expression and a later drop in mononuclear cell infiltration
Potent antitumor effects of bevacizumab in a microenvironment-dependent human lymphoma mouse model
We established a mouse model of microenvironment-dependent human lymphoma, and assessed the therapeutic potential of bevacizumab, an antitumor agent acting on the microenvironment. NOD/Shi-scid, IL-2Rγnull (NOG) mice were used as recipients of primary tumor cells from a patient with diffuse large B-cell lymphoma (DLBCL), which engraft and proliferate in a microenvironment-dependent manner. The lymphoma cells could be serially transplanted in NOG mice, but could not be maintained in in vitro cultures. Injection of bevacizumab together with CHOP (cyclophosphamide, doxorubicin, vincristine, prednisolone) significantly increased necrosis and decreased vascularization in the tumor, compared with CHOP alone. Levels of human soluble interleukin-2 receptor (sIL2R) in the serum of bevacizumab+CHOP-treated mice (reflecting the DLBCL tumor burden) were significantly lower than in CHOP recipients. Mice receiving bevacizumab monotherapy also showed significant benefit in terms of tumor necrosis and vascularization, as well as decreased serum sIL2R concentrations. The present DLBCL model reflects the human DLBCL in vivo environment more appropriately than current mouse models using established tumor cell lines. This is the first report to evaluate the efficacy of bevacizumab in such a tumor microenvironment-dependent model. Bevacizumab may be a potential treatment strategy for DLBCL patients
Dendritic cell-specific delivery of Flt3L by coronavirus vectors secures induction of therapeutic antitumor immunity
Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8(+) T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8(+) T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity
- …