16 research outputs found

    p53 Target Gene SMAR1 Is Dysregulated in Breast Cancer: Its Role in Cancer Cell Migration and Invasion

    Get PDF
    Tumor suppressor SMAR1 interacts and stabilizes p53 through phosphorylation at its serine-15 residue. We show that SMAR1 transcription is regulated by p53 through its response element present in the SMAR1 promoter. Upon Doxorubicin induced DNA damage, acetylated p53 is recruited on SMAR1 promoter that allows activation of its transcription. Once SMAR1 is induced, cell cycle arrest is observed that is correlated to increased phospho-ser-15-p53 and decreased p53 acetylation. Further we demonstrate that SMAR1 expression is drastically reduced during advancement of human breast cancer. This was correlated with defective p53 expression in breast cancer where acetylated p53 is sequestered into the heterochromatin region and become inaccessible to activate SMAR1 promoter. In a recent report we have shown that SMAR1 represses Cyclin D1 transcription through recruitment of HDAC1 dependent repressor complex at the MAR site of Cyclin D1 promoter. Here we show that downmodulation of SMAR1 in high grade breast carcinoma is correlated with upregulated Cyclin D1 expression. We also established that SMAR1 inhibits tumor cell migration and metastases through inhibition of TGFβ signaling and its downstream target genes including cutl1 and various focal adhesion molecules. Thus, we report that SMAR1 plays a central role in coordinating p53 and TGFβ pathways in human breast cancer

    A three dimensional tracking scheme for underwater non-cooperative objects in mixed LOS and NLOS environment

    No full text
    Underwater positioning and tracking scheme for non-cooperative objects is of great essence to explore unknown fields. Due to the high response time and non-line-of-sight(NLOS) propagation in the underwater acoustic sensor networks (UASNs), the existed range-based 3D target tracking algorithms are generally inaccurate on detecting underwater non-cooperative objects. In order to solve the problems above, the corresponding solutions are presented respectively in this paper. Although it is hard to change the inherent property of the underwater acoustic propagation, reducing the communication time is another way to solve the problem indirectly. Since the ranging phase and synchronize phase occupy most of the communication time, the presented novel ranging scheme for non-cooperative objects reduces the redundant time consumption, and further eliminates the necessity of synchronization process in advanced. For NLOS propagation, a distributed residual weighting discrimination (DRWD) algorithm based on grouping strategy is proposed for non-cooperative objects. The position estimations of the groups containing the NLOS link error are always distributed in isolation, and the estimations without the NLOS link errors are always concentrated in a small range. According to this feature, a low computational complexity approach namely two-step least square (LS) is proposed to determine the best location by analyzing the distribution of estimated coordinates. Meanwhile, a parameterized selection strategy is proposed first time to evaluate the construction of reference nodes in 3D target tracking. We provide a mathematical proof for our strategy, which avoids the ambiguity occurrence caused by the distribution of reference nodes. The new scheme provided for underwater acoustic tracking (UWAT) greatly improves the positioning accuracy in mixed LOS/NLOS environment. At the end of the paper, simulations are illustrated to evaluate and validate the algorithmic superiority and effectiveness
    corecore