10 research outputs found

    Current treatment options for recurrent nasopharyngeal cancer

    Get PDF
    Loco-regional control rate of nasopharyngeal carcinoma (NPC) has improved significantly in the past decade. However, local recurrence still represents a major cause of mortality and morbidity in advanced stages, and management of local failure remains a challenging issue in NPC. The best salvage treatment for local recurrent NPC remains to be determined. The options include brachytherapy, external radiotherapy, stereotactic radiosurgery, and nasopharyngectomy, either alone or in different combinations. In this article we will discuss the different options for salvage of locally recurrent NPC. Retreatment of locally recurrent NPC using radiotherapy, alone or in combination with other treatment modalities, as well as surgery, can result in long-term local control and survival in a substantial proportion of patients. For small-volume recurrent tumors (T1–T2) treated with external radiotherapy, brachytherapy or stereotactic radiosurgery, comparable results to those obtained with surgery have been reported. In contrast, treatment results of advanced-stage locally recurrent NPC are generally more satisfactory with surgery (with or without postoperative radiotherapy) than with reirradiation

    Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death

    Get PDF
    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer

    Causes of Male Infertility

    No full text

    The biology of infertility: research advances and clinical challenges

    No full text
    corecore