93 research outputs found
Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation
A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281β1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of βlargeβ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the βsmallerβ arteries and veins of radii β₯ 50 ΞΌ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
The Universal One-Loop Effective Action
We present the universal one-loop effective action for all operators of
dimension up to six obtained by integrating out massive, non-degenerate
multiplets. Our general expression may be applied to loops of heavy fermions or
bosons, and has been checked against partial results available in the
literature. The broad applicability of this approach simplifies one-loop
matching from an ultraviolet model to a lower-energy effective field theory
(EFT), a procedure which is now reduced to the evaluation of a combination of
matrices in our universal expression, without any loop integrals to evaluate.
We illustrate the relationship of our results to the Standard Model (SM) EFT,
using as an example the supersymmetric stop and sbottom squark Lagrangian and
extracting from our universal expression the Wilson coefficients of
dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version
accepted for publication in JHE
Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models
Various new physics models predict a light CP-odd Higgs boson (labeled as
) and open up new decay modes for Z-boson, such as ,
and , which could be explored at the GigaZ option of
the ILC. In this work we investigate these rare decays in several new physics
models, namely the type-II two Higgs doublet model (type-II 2HDM), the
lepton-specific two Higgs doublet model (L2HDM), the nearly minimal
supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric
standard model (NMSSM). We find that in the parameter space allowed by current
experiments, the branching ratios can reach for
(), for and for , which
implies that the decays and may be accessible
at the GigaZ option. Moreover, since different models predict different
patterns of the branching ratios, the measurement of these rare decays at the
GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected
Physics Opportunities of e+e- Linear Colliders
We describe the anticipated experimental program of an e+e- linear collider
in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current
collider designs and the expected experimental environment. We then discuss
precision studies of the W boson and top quark. Finally, we review the range of
models proposed to explain the physics of electroweak symmetry breaking and
show, for each case, the central role that the linear collider experiments will
play in elucidating this physics. (to appear in Annual Reviews of Nuclear and
Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde
Composite Higgs Search at the LHC
The Higgs boson production cross-sections and decay rates depend, within the
Standard Model (SM), on a single unknown parameter, the Higgs mass. In
composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly-interacting sector, additional parameters control the
Higgs properties which then deviate from the SM ones. These deviations modify
the LEP and Tevatron exclusion bounds and significantly affect the searches for
the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced,
which results in deterioration of the Higgs searches but the deviations of the
Higgs couplings can also allow for an enhancement of the gluon-fusion
production channel, leading to higher statistical significances. The search in
the H to gamma gamma channel can also be substantially improved due to an
enhancement of the branching fraction for the decay of the Higgs boson into a
pair of photons.Comment: 32 pages, 16 figure
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration
Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease
Effect of tube diameter and capillary number on platelet margination and near-wall dynamics
The effect of tube diameter and capillary number on platelet
margination in blood flow at tube haematocrit is investigated.
The system is modelled as three-dimensional suspension of deformable red blood
cells and nearly rigid platelets using a combination of the lattice-Boltzmann,
immersed boundary and finite element methods. Results show that margination is
facilitated by a non-diffusive radial platelet transport. This effect is
important near the edge of the cell-free layer, but it is only observed for , when red blood cells are tank-treading rather than tumbling. It is also
shown that platelet trapping in the cell-free layer is reversible for . Only for the smallest investigated tube ()
margination is essentially independent of . Once platelets have reached the
cell-free layer, they tend to slide rather than tumble. The tumbling rate is
essentially independent of but increases with . Tumbling is suppressed
by the strong confinement due to the relatively small cell-free layer thickness
at tube haematocrit.Comment: 16 pages, 10 figure
Extracellular Superoxide Dismutase Protects Histoplasma Yeast Cells from Host-Derived Oxidative Stress
In order to establish infections within the mammalian host, pathogens must protect themselves against toxic reactive oxygen species produced by phagocytes of the immune system. The fungal pathogen Histoplasma capsulatum infects both neutrophils and macrophages but the mechanisms enabling Histoplasma yeasts to survive in these phagocytes have not been fully elucidated. We show that Histoplasma yeasts produce a superoxide dismutase (Sod3) and direct it to the extracellular environment via N-terminal and C-terminal signals which promote its secretion and association with the yeast cell surface. This localization permits Sod3 to protect yeasts specifically from exogenous superoxide whereas amelioration of endogenous reactive oxygen depends on intracellular dismutases such as Sod1. While infection of resting macrophages by Histoplasma does not stimulate the phagocyte oxidative burst, interaction with polymorphonuclear leukocytes (PMNs) and cytokine-activated macrophages triggers production of reactive oxygen species (ROS). Histoplasma yeasts producing Sod3 survive co-incubation with these phagocytes but yeasts lacking Sod3 are rapidly eliminated through oxidative killing similar to the effect of phagocytes on Candida albicans yeasts. The protection provided by Sod3 against host-derived ROS extends in vivo. Without Sod3, Histoplasma yeasts are attenuated in their ability to establish respiratory infections and are rapidly cleared with the onset of adaptive immunity. The virulence of Sod3-deficient yeasts is restored in murine hosts unable to produce superoxide due to loss of the NADPH-oxidase function. These results demonstrate that phagocyte-produced ROS contributes to the immune response to Histoplasma and that Sod3 facilitates Histoplasma pathogenesis by detoxifying host-derived reactive oxygen thereby enabling Histoplasma survival
- β¦