27 research outputs found

    Precision dosing-based optimisation of paroxetine during pregnancy for poor and ultrarapid CYP2D6 metabolisers:a virtual clinical trial pharmacokinetics study

    Get PDF
    Objective: Paroxetine has been demonstrated to undergo gestation-related reductions in plasma concentrations, to an extent which is dictated by the polymorphic state of CYP 2D6. However, knowledge of appropriate dose titrations is lacking. Methods: A pharmacokinetic modelling approach was applied to examine gestational changes in trough plasma concentrations for CYP 2D6 phenotypes, followed by necessary dose adjustment strategies to maintain paroxetine levels within a therapeutic range of 20–60 ng/ml. Key findings: A decrease in trough plasma concentrations was simulated throughout gestation for all phenotypes. A significant number of ultrarapid (UM) phenotype subjects possessed trough levels below 20 ng/ml (73–76%) compared to extensive metabolisers (EM) (51–53%). Conclusions: For all phenotypes studied, there was a requirement for daily doses in excess of the standard 20 mg dose throughout gestation. For EM, a dose of 30 mg daily in trimester 1 followed by 40 mg daily in trimesters 2 and 3 is suggested to be optimal. For poor metabolisers (PM), a 20 mg daily dose in trimester 1 followed by 30 mg daily in trimesters 2 and 3 is suggested to be optimal. For UM, a 40 mg daily dose throughout gestation is suggested to be optimal
    corecore