23 research outputs found

    DNA Barcoding Reveals Cryptic Diversity in Lumbricus terrestris L., 1758 (Clitellata): Resurrection of L. herculeus (Savigny, 1826)

    Get PDF
    The widely studied and invasive earthworm, Lumbricus terrestris L., 1758 has been the subject of nomenclatural debate for many years. However these disputes were not based on suspicions of heterogeneity, but rather on the descriptions and nomenclatural acts associated with the species name. Large numbers of DNA barcode sequences of the cytochrome oxidase I obtained for nominal L. terrestris and six congeneric species reveal that there are two distinct lineages within nominal L. terrestris. One of those lineages contains the Swedish population from which the name-bearing specimen of L. terrestris was obtained. The other contains the population from which the syntype series of Enterion herculeum Savigny, 1826 was collected. In both cases modern and old representatives yielded barcode sequences allowing us to clearly establish that these are two distinct species, as different from one another as any other pair of congeners in our data set. The two are morphologically indistinguishable, except by overlapping size-related characters. We have designated a new neotype for L. terrestris. The newly designated neotype and a syntype of L. herculeus yielded DNA adequate for sequencing part of the cytochrome oxidase I gene (COI). The sequence data make possible the objective determination of the identities of earthworms morphologically identical to L. terrestris and L. herculeus, regardless of body size and segment number. Past work on nominal L. terrestris could have been on either or both species, although L. herculeus has yet to be found outside of Europe

    In vitro

    No full text

    Fungal Diversity of Norway Spruce Litter: Effects of Site Conditions and Premature Leaf Fall Caused By Bark Beetle Outbreak

    No full text
    Fungi play an important role in leaf litter decomposition due to their ability to break down the lignocellulose matrix, which other organisms are unable to digest. However, little is known regarding the factors affecting components of fungal diversity. Here, we quantified richness of internal fungi in relation to litter nutrient and phenolic concentrations, sampling season (spring or fall), and premature leaf shedding due to low precipitation and infestation of bark beetles (mainly Ips typographus and Ips duplicatus). The study was conducted in 37-year-old Norway spruce [Picea abies (L.) Karst.] stands, with three plots each in mixed forest (MF) and coniferous forest (CF) site conditions in south-central Poland. Fifty-four species of sporulating fungi were identified in 2,330 freshly fallen needles sampled during 2003-2005, including 45 species in MF and 31 in CF. The significantly higher number of species in MF was likely related to moister conditions at that site. Among isolated fungi, 22% (12 species) were identified as endophytes of Norway spruce in prior studies. During spring of 2005, we found less than half the number of isolates and fungal species at each forest site as compared to fall for the two prior years. This pattern was observed in typical soil fungi (e.g., Penicillium daleae, Penicillium purpurogenum) and endophytes/epiphytes (e.g., Aureobasidium pullulans, Alternaria alternata, Cladosporium spp., and Lophodermium piceae). Premature shedding of needles was the most likely cause of this decline because it shortened the time period for fungi to infect green needles while on the tree. For all sites and sampling periods, richness of internal fungi was strongly and positively related to the age of freshly fallen litter (assessed using needle Ca concentration as a needle age tracer) and was also negatively related to litter phenolic concentration. Richness of internal fungi in freshly fallen litter may be adversely affected by low soil moisture status, natural inhibitors slowing fungal colonization (e.g., phenolics) and biotic (e.g., insect infestation) and abiotic (e.g., drought) factors that shorten leaf life span
    corecore