1,639 research outputs found

    Steady state evoked potential (SSEP) responses in the primary and secondary somatosensory cortices of anesthetized cats: Nonlinearity characterized by harmonic and intermodulation frequencies

    Full text link
    When presented with an oscillatory sensory input at a particular frequency, F [Hz], neural systems respond with the corresponding frequency, f [Hz], and its multiples. When the input includes two frequencies (F1 and F2) and they are nonlinearly integrated in the system, responses at intermodulation frequencies (i.e., n1*f1+n2*f2 [Hz], where n1 and n2 are nonzero integers) emerge. Utilizing these properties, the steady state evoked potential (SSEP) paradigm allows us to characterize linear and nonlinear neural computation performed in cortical neurocircuitry. Here, we analyzed the steady state evoked local field potentials (LFPs) recorded from the primary (S1) and secondary (S2) somatosensory cortex of anesthetized cats (maintained with alfaxalone) while we presented slow (F1 = 23Hz) and fast (F2 = 200Hz) somatosensory vibration to the contralateral paw pads and digits. Over 9 experimental sessions, we recorded LFPs from N = 1620 and N = 1008 bipolar-referenced sites in S1 and S2 using electrode arrays. Power spectral analyses revealed strong responses at 1) the fundamental (f1, f2), 2) its harmonic, 3) the intermodulation frequencies, and 4) broadband frequencies (50-150Hz). To compare the computational architecture in S1 and S2, we employed simple computational modeling. Our modeling results necessitate nonlinear computation to explain SSEP in S2 more than S1. Combined with our current analysis of LFPs, our paradigm offers a rare opportunity to constrain the computational architecture of hierarchical organization of S1 and S2 and to reveal how a large-scale SSEP can emerge from local neural population activities

    Experimental Investigation of Reinforced Concrete T-Beams Strengthened in Shear with Externally Bonded CFRP Sheets

    Get PDF
    An experimental investigation was undertaken into the effectiveness of unanchored and anchored externally bonded (EB) U-wrapped carbon fibre reinforced polymer (CFRP) shear strengthening for reinforced concrete T-beams at a range of realistic sizes. The T-beam sizes, geometry and reinforcement were chosen to reflect existing slab-on-beam structures with low levels of transverse steel shear reinforcement. Geometrically similar reinforced concrete T-beams were tested across three sizes ranging from 360 to 720 mm in depth and with different amounts of EB CFRP shear reinforcement. The beams were subjected to three-point bending with a span to depth ratio of 3.5. All the beams failed in diagonal shear. The experimental results indicate significant variability in the capacity of unstrengthened control beams, and a number of these control beams showed greater shear capacity than their EB CFRP strengthened counterparts. Greater thicknesses of CFRP reinforcement did not lead to increased shear capacity compared with lesser thicknesses of unanchored or anchored EB CFRP, but anchored EB CFRP did lead to moderate increases in shear capacity compared to both control and unanchored EB CFRP strengthened beams.The authors gratefully acknowledge the help of the laboratory staff of University of Bath and University of Cambridge. The authors would also like to acknowledge the financial support of: the UK Engineering and Physical Sciences Research Council (under grants EPSRC EP/I018921/1 and EP/I018972/1); the Universities of Bath and Cambridge; and the project partners and sponsors – Parsons Brinckerhoff, Tony Gee and Partners LLP, Arup, Highways England, Concrete Repairs Ltd, LG Mouchel and Partners, The Concrete Society, Fyfe Europe S.A., Fibrwrap UK, Hughes Brothers and Ebor Concrete Ltd.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by ASCE

    Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations

    Full text link
    It is possible to learn a great deal about exoplanet atmospheres even when we cannot spatially resolve the planets from their host stars. In this chapter, we overview the basic techniques used to characterize transiting exoplanets - transmission spectroscopy, emission and reflection spectroscopy, and full-orbit phase curve observations. We discuss practical considerations, including current and future observing facilities and best practices for measuring precise spectra. We also highlight major observational results on the chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure

    Effect of transverse gap-junction channels on transverse propagation in an enlarged PSpice model of cardiac muscle

    Get PDF
    BACKGROUND: In previous PSpice modeling studies of simulated action potentials (APs) in parallel chains of cardiac muscle, it was found that transverse propagation could occur between adjacent chains in the absence of gap-junction (gj) channels, presumably by the electric field (EF) generated in the narrow interstitial space between the chains. Transverse propagation was sometimes erratic, the more distal chains firing out of order. METHODS: In the present study, the propagation of complete APs was studied in a 2-dimensional network of 100 cardiac muscle cells (10 × 10 model). Various numbers of gj-channels (assumed to be 100 pS each) were inserted across the junctions between the longitudinal cells of each chain and between adjacent chains (only at the end cells of each chain). The shunt resistance produced by the gj-channels (R(gj)) was varied from 100,000 MΩ (0 gj-channels) to 1,000 MΩ (10 channels), 100 MΩ (100 channels) and 10 MΩ (1,000 channels). Total propagation time (TPT) was measured as the difference between the times when the AP rising phase of the first cell (cell # A1) and the last cell (in the J chain) crossed 0 mV. When there were no gj-channels, the excitation was transmitted between cells by the EF, i.e., the negative potential generated in the narrow junctional clefts (e.g., 100 Å) when the prejunctional membrane fired an AP. For the EF mechanism to work, the prejunctional membrane must fire a fraction of a millisecond before the adjacent surface membrane. When there were many gj-channels (e.g., 100 or 1,000), the excitation was transmitted by local-circuit current flow from one cell to the next through these channels. RESULTS: TPT was measured as a function of four different numbers of transverse gj-channels, namely 0, 10, 100 and 1,000, and four different numbers of longitudinal gj-channels, namely 0, 10, 100 and 1,000. Thus, 16 different measurements were made. It was found that increasing the number of transverse channels had no effect on TPT when the number of longitudinal channels was low (i.e., 0 or 10). In contrast, when the number of longitudinal gj-channels was high (e.g., 100 or 1,000), then increasing the number of transverse channels decreased TPT markedly. CONCLUSION: Thus, complete APs could propagate along a network of 100 cardiac muscle cells even when no gj-channels were present between the cells. Insertion of transverse gj-channels greatly speeded propagation through the 10 × 10 network when there were also many longitudinal gj-channels

    Higher serum vitamin D3 levels are associated with better cognitive test performance in patients with Alzheimer's disease

    Get PDF
    Background/Aims: Recent studies suggest that vitamin D metabolites may be important for preserving cognitive function via specific neuroprotective effects. No large studies have examined the association between vitamin D status and cognition. Methods: In this cross-sectional study, we analyzed the serum 25-hydroxyvitamin D3levels and Mini-Mental State Examination (MMSE) test scores of 225 older outpatients who were diagnosed as having probable Alzheimer's disease (AD). In addition to the 25-hydroxyvitamin D3levels, we analyzed the serum vitamin B1, B6and B12levels. Results: An association was found between MMSE test scores and serum 25-hydroxyvitamin D3levels, with a β-coefficient of 0.05 (p = 0.01). Vitamin-D-sufficient patients had significantly higher MMSE scores as compared to vitamin-D-insufficient ones. No association was found with the other serum vitamin levels. Conclusions: These data support the idea that a relationship exists between vitamin D status and cognition in patients with probable AD. However, given the cross-sectional design of this study, no causality can be concluded. Further prospective studies are needed to specify the contribution of vitamin D status to the onset and course of cognitive decline and AD. Copyrigh

    Nutritional concerns, health and survival in old age

    Get PDF
    The ageing process is—apart from chance or good luck—not only influenced by factors intrinsic to the individual, but also by extrinsic factors that include environmental and lifestyle variables. This paper deals with the epidemiological evidence for the role of dietary patterns and key nutritional concerns in relation to survival and ageing related disorders that present themselves in later life. Dietary patterns, such as the Mediterranean diet, characterized by mainly plant foods including protective factors e.g. vegetables, nuts and monounsaturated fatty acids and excluding harmful factors e.g. trans-fatty acids and foods with a high glycemic factor, appear to be relevant even in old age. Specific nutritional concerns focus on general undernutrition, vitamin D and vitamin B12. Prevalence of nutritional inadequacies, diagnostic criteria, causes and health consequences are described. The paper ends with recommendations for guidance on healthy diets for elderly people. An important challenge should be research to further expand the knowledge base, acknowledging the complexity of the ageing process and integrating different dimensions of research into human healthy ageing in properly designed studies. In the mean time reversing poor adherence to existing guidelines for a healthy diet remains a first challenge in public health nutritional practices

    The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins

    Get PDF
    Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell

    Dystrophin Is Required for the Normal Function of the Cardio-Protective KATP Channel in Cardiomyocytes

    Get PDF
    Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients
    corecore