25 research outputs found

    State of the Climate in 2016

    Get PDF

    Impact of GODAE products on nested HYCOM simulations of the West Florida Shelf

    Full text link
    Nested non-assimilative simulations of the West Florida Shelf for 2004-2005 are used to quantify the impact of initial and boundary conditions provided by Global Ocean Data Assimilation Experiment ocean products. Simulations are nested within an optimum interpolation hindcast of the Atlantic Ocean, the initial test of the US Navy Coupled Ocean Data Assimilation system for the Gulf of Mexico, and a global ocean hindcast that used the latter assimilation system. These simulations are compared to one that is nested in a non-assimilative Gulf of Mexico model to document the importance of assimilation in the outer model. Simulations are evaluated by comparing model results to moored Acoustic Doppler Current Profiler measurements and moored sea surface temperature time series. The choice of outer model has little influence on simulated velocity fluctuations over the inner and middle shelf where fluctuations are dominated by the deterministic wind-driven response. Improvement is documented in the representation of alongshore flow variability over the outer shelf, driven in part by the intrusion of the Loop Current and associated cyclones at the shelf edge near the Dry Tortugas. This improvement was realized in the simulation nested in the global ocean hindcast, the only outer model choice that contained a realistic representation of Loop Current transport associated with basin-scale wind-driven gyre circulation and the Atlantic Meridional Overturning Circulation. For temperature, the non-assimilative outer model had a cold bias in the upper ocean that was substantially corrected in the data-assimilative outer models, leading to improved temperature representation in the simulations nested in the assimilative outer models

    Environmental controls and facies architecture of a jurassic carbonate episode La Manga Formation), Mendoza Province, Neuquén Basin

    No full text
    La Manga Formation is a vast carbonate system developed in the Neuquén Basin. The age is based in ammonite faunas, ranging from Early Callovian (Bodenbenderi-Proximum Zone) to Middle Oxfordian (Cordatum Standard Zone to Transversarium Standard Zone, and probably to the lower part of the Bifurcatus Standard Zone). A stratigraphical and sedimentological analysis, in the outcrops exposed in the south of Mendoza province, enabled the recognition of five facies associations of a carbonate ramp corresponding to (1) distal outer ramp, (2) proximal outer to distal middle ramp, (3) proximal middle ramp, (4) inner ramp deposits (shoreface, shoal, patch reef, shallow subtidal lagoon and tidal flat) and (5) paleokarstic facies. These facies correspond to homoclinal to distally steepened carbonate ramp. The facies associations are included into three third-order depositional sequences (DS-1, DS-2, DS-3) represented by transgressive and highstand systems tracts with sequence boundaries of regional character. Different controlling factors can be recognised in the deposition of this unit. The abrupt changes of facies, as well as paleokarst and epikarst discontinuity surfaces in the successions provide important evidence in terms of depositional environment and vertical evolution of the carbonate ramp. Facies patterns are variable across the outcrop area and vertically through time because of a combination of ramp morphology, siliciclastic supply, sea level changes and tectonic effects. In the southern sections, siliciclastic influx influenced the deposition of proximal middle ramp facies later overlain by scleractinian patch reefs which grew up throughout progressive stages from aggradational to progradational facies in response to climate controls and nutrient levels influence. In northern outcrops, tectonic controls affected the ramp topography and influenced the development of distal deep marine facies. Shallow subtidal and peritidal cycles indicate a combination of allocyclic and autocyclic processes controlling accommodation space and sediment accumulation.Fil: Palma, Ricardo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Bressan, Graciela Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Riccardi, Alberto Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López Gómez, José. Universidad Complutense de Madrid; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Martín Chivelet, Javier. Consejo Superior de Investigaciones Científicas; España. Universidad Complutense de Madrid; Españ
    corecore