84 research outputs found

    Reconceptualizing Profit-Orientation in Management: A Karmic View on "Return on Investment" Calculations

    Get PDF
    From the perspective of the present day, Puritan-inspired capitalism seems to have succeeded globally, including in India. Connected to this, short-term profit-orientation in management seems to constrain the scope of different management approaches in a tight ideological corset. This article discusses the possibility of replacing this Puritan doctrine with the crucial elements of Indian philosophy: Karma and samsara. In doing so, the possibility of revising the guiding principles in capitalist management becomes conceivable, namely the monetary focus of profit-orientation and its short-term orientation. This perspective allows a detachment of the concept of profit from the realm of money, as the seemingly only objectifiable measure of profit. Furthermore it allows a removal of the expectation that every "investment" has to directly "pay off". A karmic view offers management a possible facility for being more caring about the needs and fates of other stakeholders, as profit-orientation would no longer be attached as a factual constraint to merely accumulate money. (author's abstract

    Pathogenesis of pili annulati

    Full text link
    Plucked scalp hairs and hair roots of pili annulati were examined to understand their pathogenesis. Stereoscopic examinations of hairs in transmitted light and/or reflected light and light microscopic surveys of the cross-sections of hairs confirmed that the cortical empty spaces appeared to be responsible to the unique dotted shiny appearance of the hairs seen by the unaided eyes under a refracted light. By transmission electron microscope, small vacuoles and dense bodies were observed in the cytoplasm of the differentiating cortical cells; subsequently, with increasing number of tonofilaments, an uneven distribution of free ribosomes occurred and abnormal spaces containing fine granular substances were formed in the cytoplasm of the cortical cells. Occasionally, extremely large cortical trichohyaline granules were found. In the keratinized hair, irregular empty spaces were present in the cortex of the abnormal hair segments. Histochemically, the keratinized cortex of the affected hairs always had more residual SH groups than the controls. Pili annulati may be a disorder of protein metabolism involving a partial dysfunction of cytoplasmic ribosomes, resulting in a lack of cortical keratin formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47241/1/403_2004_Article_BF00440605.pd

    Programmable Ligand Detection System in Plants through a Synthetic Signal Transduction Pathway

    Get PDF
    There is an unmet need to monitor human and natural environments for substances that are intentionally or unintentionally introduced. A long-sought goal is to adapt plants to sense and respond to specific substances for use as environmental monitors. Computationally re-designed periplasmic binding proteins (PBPs) provide a means to design highly sensitive and specific ligand sensing capabilities in receptors. Input from these proteins can be linked to gene expression through histidine kinase (HK) mediated signaling. Components of HK signaling systems are evolutionarily conserved between bacteria and plants. We previously reported that in response to cytokinin-mediated HK activation in plants, the bacterial response regulator PhoB translocates to the nucleus and activates transcription. Also, we previously described a plant visual response system, the de-greening circuit, a threshold sensitive reporter system that produces a visual response which is remotely detectable and quantifiable.We describe assembly and function of a complete synthetic signal transduction pathway in plants that links input from computationally re-designed PBPs to a visual response. To sense extracellular ligands, we targeted the computational re-designed PBPs to the apoplast. PBPs bind the ligand and develop affinity for the extracellular domain of a chemotactic protein, Trg. We experimentally developed Trg fusions proteins, which bind the ligand-PBP complex, and activate intracellular PhoR, the HK cognate of PhoB. We then adapted Trg-PhoR fusions for function in plants showing that in the presence of an external ligand PhoB translocates to the nucleus and activates transcription. We linked this input to the de-greening circuit creating a detector plant.Our system is modular and PBPs can theoretically be designed to bind most small molecules. Hence our system, with improvements, may allow plants to serve as a simple and inexpensive means to monitor human surroundings for substances such as pollutants, explosives, or chemical agents

    Srv Mediated Dispersal of Streptococcal Biofilms Through SpeB Is Observed in CovRS+ Strains

    Get PDF
    Group A Streptococcus (GAS) is a human specific pathogen capable of causing both mild infections and severe invasive disease. We and others have shown that GAS is able to form biofilms during infection. That is to say, they form a three-dimensional, surface attached structure consisting of bacteria and a multi-component extracellular matrix. The mechanisms involved in regulation and dispersal of these GAS structures are still unclear. Recently we have reported that in the absence of the transcriptional regulator Srv in the MGAS5005 background, the cysteine protease SpeB is constitutively produced, leading to increased tissue damage and decreased biofilm formation during a subcutaneous infection in a mouse model. This was interesting because MGAS5005 has a naturally occurring mutation that inactivates the sensor kinase domain of the two component regulatory system CovRS. Others have previously shown that strains lacking covS are associated with decreased SpeB production due to CovR repression of speB expression. Thus, our results suggest the inactivation of srv can bypass CovR repression and lead to constitutive SpeB production. We hypothesized that Srv control of SpeB production may be a mechanism to regulate biofilm dispersal and provide a mechanism by which mild infection can transition to severe disease through biofilm dispersal. The question remained however, is this mechanism conserved among GAS strains or restricted to the unique genetic makeup of MGAS5005. Here we show that Srv mediated control of SpeB and biofilm dispersal is conserved in the invasive clinical isolates RGAS053 (serotype M1) and MGAS315 (serotype M3), both of which have covS intact. This work provides additional evidence that Srv regulated control of SpeB may mediate biofilm formation and dispersal in diverse strain backgrounds

    The BARRIERS scale -- the barriers to research utilization scale: A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A commonly recommended strategy for increasing research use in clinical practice is to identify barriers to change and then tailor interventions to overcome the identified barriers. In nursing, the BARRIERS scale has been used extensively to identify barriers to research utilization.</p> <p>Aim and objectives</p> <p>The aim of this systematic review was to examine the state of knowledge resulting from use of the BARRIERS scale and to make recommendations about future use of the scale. The following objectives were addressed: To examine how the scale has been modified, to examine its psychometric properties, to determine the main barriers (and whether they varied over time and geographic locations), and to identify associations between nurses' reported barriers and reported research use.</p> <p>Methods</p> <p>Medline (1991 to September 2009) and CINHAL (1991 to September 2009) were searched for published research, and ProQuest<sup>® </sup>digital dissertations were searched for unpublished dissertations using the BARRIERS scale. Inclusion criteria were: studies using the BARRIERS scale in its entirety and where the sample was nurses. Two authors independently assessed the study quality and extracted the data. Descriptive and inferential statistics were used.</p> <p>Results</p> <p>Sixty-three studies were included, with most using a cross-sectional design. Not one study used the scale for tailoring interventions to overcome identified barriers. The main barriers reported were related to the setting, and the presentation of research findings. Overall, identified barriers were consistent over time and across geographic locations, despite varying sample size, response rate, study setting, and assessment of study quality. Few studies reported associations between reported research use and perceptions of barriers to research utilization.</p> <p>Conclusions</p> <p>The BARRIERS scale is a nonspecific tool for identifying general barriers to research utilization. The scale is reliable as reflected in assessments of internal consistency. The validity of the scale, however, is doubtful. There is no evidence that it is a useful tool for planning implementation interventions. We recommend that no further descriptive studies using the BARRIERS scale be undertaken. Barriers need to be measured specific to the particular context of implementation and the intended evidence to be implemented.</p

    Transcriptome Analysis of Synaptoneurosomes Identifies Neuroplasticity Genes Overexpressed in Incipient Alzheimer's Disease

    Get PDF
    In Alzheimer's disease (AD), early deficits in learning and memory are a consequence of synaptic modification induced by toxic beta-amyloid oligomers (oAβ). To identify immediate molecular targets downstream of oAβ binding, we prepared synaptoneurosomes from prefrontal cortex of control and incipient AD (IAD) patients, and isolated mRNAs for comparison of gene expression. This novel approach concentrates synaptic mRNA, thereby increasing the ratio of synaptic to somal mRNA and allowing discrimination of expression changes in synaptically localized genes. In IAD patients, global measures of cognition declined with increasing levels of dimeric Aβ (dAβ). These patients also showed increased expression of neuroplasticity related genes, many encoding 3′UTR consensus sequences that regulate translation in the synapse. An increase in mRNA encoding the GluR2 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) was paralleled by elevated expression of the corresponding protein in IAD. These results imply a functional impact on synaptic transmission as GluR2, if inserted, maintains the receptors in a low conductance state. Some overexpressed genes may induce early deficits in cognition and others compensatory mechanisms, providing targets for intervention to moderate the response to dAβ

    The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins

    Get PDF
    Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Variants within the MMP3 gene and patellar tendon properties in vivo in an asymptomatic population

    Get PDF
    Background/aim Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between three polymorphisms of the MMP3 gene, (rs679620, rs591058 and rs650108) and patellar tendon dimensional and mechanical properties in vivo. Methods One hundred and sixty, healthy, recreationally-active, Caucasian men and women, aged 18–39 were recruited. MMP3 genotype determined using real-time PCR was used to select 84 participants showing greatest genetic differences to complete phenotype measurements. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. Results No significant associations were evident between the completely linked MMP3 rs591058 and rs679620 gene variants, and closely linked rs650108 gene variant, and either patellar tendon volume (rs679620, P = 0.845; rs650108, P = 0.984) or elastic modulus (rs679620, P = 0.226; rs650108, P = 0.088). Similarly, there were no associations with the Z-score that combined those dimension and functional properties into a composite value (rs679620, P = 0.654; rs650108, P = 0.390). Similarly, no association was evident when comparing individuals with/without the rarer alleles (P > 0.01 in all cases). Conclusions Patellar tendon properties do not seem to be influenced by the MMP3 gene variants measured. Although these MMP3 gene variants have previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties
    corecore