27 research outputs found

    Presenilin Controls CBP Levels in the Adult Drosophila Central Nervous System

    Get PDF
    Background: Dominant mutations in both human Presenilin (Psn) genes have been correlated with the formation of amyloid plaques and development of familial early-onset Alzheimer’s disease (AD). However, a definitive mechanism whereby plaque formation causes the pathology of familial and sporadic forms of AD has remained elusive. Recent discoveries of several substrates for Psn protease activity have sparked alternative hypotheses for the pathophysiology underlying AD. CBP (CREB-binding protein) is a haplo-insufficient transcriptional co-activator with histone acetly-transferase (HAT) activity that has been proposed to be a downstream target of Psn signaling. Individuals with altered CBP have cognitive deficits that have been linked to several neurological disorders. Methodology/Principal Findings: Using a transgenic RNA-interference strategy to selectively silence CBP, Psn, and Notch in adult Drosophila, we provide evidence for the first time that Psn is required for normal CBP levels and for maintaining specific global acetylations at lysine 8 of histone 4 (H4K8ac) in the central nervous system (CNS). In addition, flies conditionally compromised for the adult-expression of CBP display an altered geotaxis behavior that may reflect a neurological defect. Conclusions/Significance: Our data support a model in which Psn regulates CBP levels in the adult fly brain in a manner that is independent of Notch signaling. Although we do not understand the molecular mechanism underlying th

    A NICER Look at Strong X-Ray Obscuration in the Seyfert-2 Galaxy NGC 4388

    No full text
    We present an analysis of the time-averaged spectrum of the Seyfert-2 active galaxy NGC 4388, obtained by NICER. The intrinsic strength of the reflection spectrum in NGC 4388, the large collecting area and favorable pass band of NICER, and a net exposure of 105.6 ks yielded an exceptionally sensitive spectrum. Using two independent families of models, the intrinsic spectrum from the central engine is found to be highly obscured but not Compton-thick. Enforcing physical self-consistency within each model, the independent treatments give formally consistent results: N_H = 2.67 (-0.03,+0.02) E+23 cm^-2 or N_H = 2.64 (-0.03, +0.03) E+23 cm^-2. Past measurements made with Suzaku and XMM-Newton are in broad agreement with these column density values. A more recent measurement with NuSTAR (in late 2013) recorded a column density about twice as large; the robustness of this variability is reinforced by the use of consistent models and procedures. The neutral Fe K-alpha line in the NICER spectrum is nominally resolved and consistent with an origin in the optical broad line region (BLR). The data also require ionized absorption in the Fe K band, similar to the "warm absorbers" detected in Seyfert-1 active galactic nuclei (AGN). The low-energy spectrum is consistent with a set of ionized plasma components. We discuss these findings and note that the geometric inferences that derive from this analysis can be tested with XRISM and Athena.Comment: Accepted for publication in Ap

    NICER Discovers Spectral Lines during Photospheric Radius Expansion Bursts from 4U 1820−30: Evidence for Burst-driven Winds

    No full text
    © 2019. The American Astronomical Society. All rights reserved. We report the discovery with the Neutron Star Interior Composition Explorer (NICER) of narrow emission and absorption lines during photospheric radius expansion (PRE) X-ray bursts from the ultracompact binary 4U 1820-30. NICER observed 4U 1820-30 in 2017 August during a low-flux, hard spectral state, accumulating about 60 ks of exposure. Five thermonuclear X-ray bursts were detected, of which four showed clear signs of PRE. We extracted spectra during the PRE phases and fit each to a model that includes a Comptonized component to describe the accretion-driven emission, and a blackbody for the burst thermal radiation. The temperature and spherical emitting radius of the fitted blackbody are used to assess the strength of PRE in each burst. The two strongest PRE bursts (burst pair 1) had blackbody temperatures of ≈0.6 keV and emitting radii of ≈100 km (at a distance of 8.4 kpc). The other two bursts (burst pair 2) had higher temperatures (≈0.67 keV) and smaller radii (≈75 km). All of the PRE bursts show evidence of narrow line emission near 1 keV. By coadding the PRE phase spectra of burst pairs 1 and, separately, 2, we find, in both coadded spectra, significant, narrow, spectral features near 1.0 (emission), 1.7, and 3.0 keV (both in absorption). Remarkably, all the fitted line centroids in the coadded spectrum of burst pair 1 appear systematically blueshifted by a factor of 1.046 ±0.006 compared to the centroids of pair 2, strongly indicative of a gravitational shift, a wind-induced blueshift, or more likely some combination of both effects. The observed shifts are consistent with this scenario in that the stronger PRE bursts in pair 1 reach larger photospheric radii, and thus have weaker gravitational redshifts, and they generate faster outflows, yielding higher blueshifts. We discuss possible elemental identifications for the observed features in the context of recent burst-driven wind models

    Observations of the Ultra-compact X-Ray Binary 4U 1543-624 in Outburst with NICER, INTEGRAL, Swift , and ATCA

    Get PDF
    © 2019. The American Astronomical Society. All rights reserved.. We report on X-ray and radio observations of the ultra-compact X-ray binary 4U 1543-624 taken in August 2017 during an enhanced accretion episode. We obtained Neutron Star Interior Composition Explorer (NICER) monitoring of the source over a ∼10 day period during which target-of-opportunity observations were also conducted with Swift, INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Australia Telescope Compact Array. Emission lines were measured in the NICER X-ray spectrum at ∼0.64 keV and ∼6.4 keV that correspond to O and Fe, respectively. By modeling these line components, we are able to track changes in the accretion disk throughout this period. The innermost accretion flow appears to move inwards from hundreds of gravitational radii (R g = GM/c 2) at the beginning of the outburst to <8.7 R g at peak intensity. We do not detect the source in radio, but are able to place a 3σ upper limit on the flux density at 27 μJy beam-1. Comparing the radio and X-ray luminosities, we find that the source lies significantly away from the range typical of black holes in the - plane, suggesting a neutron star primary. This adds to the evidence that neutron stars (NSs) do not follow a single track in the - plane, limiting its use in distinguishing between different classes of NSs based on radio and X-ray observations alone

    A NICER discovery of a low-frequency quasi-periodic oscillation in the soft-intermediate state of MAXI J1535–571

    No full text
    We present the discovery of a low-frequency ≈5.7 Hz quasi-periodic oscillation (QPO) feature in observations of the black hole X-ray binary MAXI J1535-571 in its soft-intermediate state, obtained in 2017 September-October by the Neutron Star Interior Composition Explorer. The feature is relatively broad (compared to other low-frequency QPOs; quality factor Q ≈ 2) and weak (1.9% rms in 3-10 keV), and is accompanied by a weak harmonic and low-amplitude broadband noise. These characteristics identify it as a weak Type A/B QPO, similar to ones previously identified in the soft-intermediate state of the transient black hole X-ray binary XTE J1550-564. The lag-energy spectrum of the QPO shows increasing soft lags toward lower energies, approaching 50 ms at 1 keV (with respect to a 3-10 keV continuum). This large phase shift has similar amplitude but opposite sign to that seen in Rossi X-Ray Timing Explorer data for a Type B QPO from the transient black hole X-ray binary GX 339-4. Previous phase-resolved spectroscopy analysis of the Type B QPO in GX 339-4 pointed toward a precessing jet-like corona illuminating the accretion disk as the origin of the QPO signal. We suggest that this QPO in MAXI J1535-571 may have the same origin, with the different lag sign depending on the scale height of the emitting region and the observer inclination angle
    corecore