22 research outputs found

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CPG of the rat spinal cord in vitro.

    Get PDF
    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 \u3bcM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits

    Genome-based trait prediction in multi- environment breeding trials in groundnut

    Get PDF
    Genomic selection (GS) can be an efficient and cost-effective breeding approach which captures both small- and large-effect genetic factors and therefore promises to achieve higher genetic gains for complex traits such as yield and oil content in groundnut. A training population was constituted with 340 elite lines followed by genotyping with 58 K ‘Axiom_Arachis’ SNP array and phenotyping for key agronomic traits at three locations in India. Four GS models were tested using three different random cross-validation schemes (CV0, CV1 and CV2). These models are: (1) model 1 (M1 = E + L) which includes the main effects of environment (E) and line (L); (2) model 2 (M2 = E + L + G) which includes the main effects of markers (G) in addition to E and L; (3) model 3 (M3 = E + L + G + GE), a naïve interaction model; and (4) model 4 (E + L + G + LE + GE), a naïve and informed interaction model. Prediction accuracy estimated for four models indicated clear advantage of the inclusion of marker information which was reflected in better prediction accuracy achieved with models M2, M3 and M4 as compared to M1 model. High prediction accuracies (> 0.600) were observed for days to 50% flowering, days to maturity, hundred seed weight, oleic acid, rust@90 days, rust@105 days and late leaf spot@90 days, while medium prediction accuracies (0.400–0.600) were obtained for pods/plant, shelling %, and total yield/plant. Assessment of comparative prediction accuracy for different GS models to perform selection for untested genotypes, and unobserved and unevaluated environments provided greater insights on potential application of GS breeding in groundnut
    corecore