214 research outputs found

    Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression

    Get PDF
    The study of speciation has advanced considerably in the last decades because of the increased application of molecular tools. In particular, the quantification of gene flow between recently diverged species could be addressed. Drosophila simulans and Drosophila mauritiana diverged, probably allopatrically, from a common ancestor approximately 250 000 years ago. However, these species share one mitochondrial DNA (mtDNA) haplotype indicative of a recent episode of introgression. To study the extent of gene flow between these species, we took advantage of a large sample of D. mauritiana and employed a range of different markers, i.e. nuclear and mitochondrial sequences, and microsatellites. This allowed us to detect two new mtDNA haplotypes (MAU3 and MAU4). These haplotypes diverged quite recently from haplotypes of the siII group present in cosmopolitan populations of D. simulans. The mean divergence time of the most diverged haplotype (MAU4) is approximately 127 000 years, which is more than 100 000 years before the assumed speciation time. Interestingly, we also found some evidence for gene flow at the nuclear level because an excess of putatively neutral loci shows significantly reduced differentiation between D. simulans and D. mauritiana. Our results suggest that these species are exchanging genes more frequently than previously thought

    Paradoxes and Mechanisms for Choice under Risk

    Get PDF
    Experiments on choice under risk typically involve multiple decisions by individual subjects. The choice of mechanism for selecting decision(s) for payoff is an essential design feature unless subjects isolate each one of the multiple decisions. We report treatments with different payoff mechanisms but the same decision tasks. The data show large differences across mechanisms in subjects’ revealed risk preferences, a clear violation of isolation. We illustrate the importance of these mechanism effects by identifying their implications for classical tests of theories of decision under risk. We discuss theoretical properties of commonly used mechanisms, and new mechanisms introduced herein, in order to clarify which mechanisms are theoretically incentive compatible for which theories. We identify behavioral properties of some mechanisms that can introduce bias in elicited risk preferences – from cross-task contamination – even when the mechanism used is theoretically incentive compatible. We explain that selection of a payoff mechanism is an important component of experimental design in many topic areas including social preferences, public goods, bargaining, and choice under uncertainty and ambiguity as well as experiments on decisions under risk

    The Occurrence of Photorhabdus-Like Toxin Complexes in Bacillus thuringiensis

    Get PDF
    Recently, genomic sequencing of a Bacillus thuringiensis (Bt) isolate from our collection revealed the presence of an apparent operon encoding an insecticidal toxin complex (Tca) similar to that first described from the entomopathogen Photorhabdus luminescens. To determine whether these genes are widespread among Bt strains, we screened isolates from the collection for the presence of tccC, one of the genes needed for the expression of fully functional toxin complexes. Among 81 isolates chosen to represent commonly encountered biochemical phenotypes, 17 were found to possess a tccC. Phylogenetic analysis of the 81 isolates by multilocus sequence typing revealed that all the isolates possessing a tccC gene were restricted to two sequence types related to Bt varieties morrisoni, tenebrionis, israelensis and toumanoffi. Sequencing of the ∼17 kb tca operon from two isolates representing each of the two sequence types revealed >99% sequence identity. Optical mapping of DNA from Bt isolates representing each of the sequence types revealed nearly identical plasmids of ca. 333 and 338 kbp, respectively. Selected isolates were found to be toxic to gypsy moth larvae, but were not as effective as a commercial strain of Bt kurstaki. Some isolates were found to inhibit growth of Colorado potato beetle. Custom Taqman® relative quantitative real-time PCR assays for Tc-encoding Bt revealed both tcaA and tcaB genes were expressed within infected gypsy moth larvae

    The surprising negative correlation of gene length and optimal codon use - disentangling translational selection from GC-biased gene conversion in yeast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Surprisingly, in several multi-cellular eukaryotes optimal codon use correlates negatively with gene length. This contrasts with the expectation under selection for translational accuracy. While suggested explanations focus on variation in strength and efficiency of translational selection, it has rarely been noticed that the negative correlation is reported only in organisms whose optimal codons are biased towards codons that end with G or C (-GC). This raises the question whether forces that affect base composition - such as GC-biased gene conversion - contribute to the negative correlation between optimal codon use and gene length.</p> <p>Results</p> <p>Yeast is a good organism to study this as equal numbers of optimal codons end in -GC and -AT and one may hence compare frequencies of optimal GC- with optimal AT-ending codons to disentangle the forces. Results of this study demonstrate in yeast frequencies of GC-ending (optimal AND non-optimal) codons decrease with gene length and increase with recombination. A decrease of GC-ending codons along genes contributes to the negative correlation with gene length. Correlations with recombination and gene expression differentiate between GC-ending and optimal codons, and also substitution patterns support effects of GC-biased gene conversion.</p> <p>Conclusion</p> <p>While the general effect of GC-biased gene conversion is well known, the negative correlation of optimal codon use with gene length has not been considered in this context before. Initiation of gene conversion events in promoter regions and the presence of a gene conversion gradient most likely explain the observed decrease of GC-ending codons with gene length and gene position.</p

    Estimation of Isolation Times of the Island Species in the Drosophila simulans Complex from Multilocus DNA Sequence Data

    Get PDF
    Background: The Drosophila simulans species complex continues to serve as an important model system for the study of new species formation. The complex is comprised of the cosmopolitan species, D. simulans, and two island endemics, D. mauritiana and D. sechellia. A substantial amount of effort has gone into reconstructing the natural history of the complex, in part to infer the context in which functional divergence among the species has arisen. In this regard, a key parameter to be estimated is the initial isolation time (t) of each island species. Loci in regions of low recombination have lower divergence within the complex than do other loci, yet divergence from D. melanogaster is similar for both classes. This might reflect gene flow of the lowrecombination loci subsequent to initial isolation, but it might also reflect differential effects of changing population size on the two recombination classes of loci when the low-recombination loci are subject to genetic hitchhiking or pseudohitchhiking Methodology/Principal Findings: New DNA sequence variation data for 17 loci corroborate the prior observation from 13 loci that DNA sequence divergence is reduced in genes of low recombination. Two models are presented to estimate t and other relevant parameters (substitution rate correction factors in lineages leading to the island species and, in the case of the 4-parameter model, the ratio of ancestral to extant effective population size) from the multilocus DNA sequence data. Conclusions/Significance: In general, it appears that both island species were isolated at about the same time, here estimated at,250,000 years ago. It also appears that the difference in divergence patterns of genes in regions of low an

    Exploring Demographic, Physical, and Historical Explanations for the Genetic Structure of Two Lineages of Greater Antillean Bats

    Get PDF
    Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern

    Reconstructing Druze population history

    Get PDF
    The Druze are an aggregate of communities in the Levant and Near East living almost exclusively in the mountains of Syria, Lebanon and Israel whose ~1000 year old religion formally opposes mixed marriages and conversions. Despite increasing interest in genetics of the population structure of the Druze, their population history remains unknown. We investigated the genetic relationships between Israeli Druze and both modern and ancient populations. We evaluated our findings in light of three hypotheses purporting to explain Druze history that posit Arabian, Persian or mixed Near Eastern-Levantine roots. The biogeographical analysis localised proto-Druze to the mountainous regions of southeastern Turkey, northern Iraq and southeast Syria and their descendants clustered along a trajectory between these two regions. The mixed Near Eastern-Middle Eastern localisation of the Druze, shown using both modern and ancient DNA data, is distinct from that of neighbouring Syrians, Palestinians and most of the Lebanese, who exhibit a high affinity to the Levant. Druze biogeographic affinity, migration patterns, time of emergence and genetic similarity to Near Eastern populations are highly suggestive of Armenian-Turkish ancestries for the proto-Druze

    The Druze: A Population Genetic Refugium of the Near East

    Get PDF
    BACKGROUND: Phylogenetic mitochondrial DNA haplogroups are highly partitioned across global geographic regions. A unique exception is the X haplogroup, which has a widespread global distribution without major regions of distinct localization. PRINCIPAL FINDINGS: We have examined mitochondrial DNA sequence variation together with Y-chromosome-based haplogroup structure among the Druze, a religious minority with a unique socio-demographic history residing in the Near East. We observed a striking overall pattern of heterogeneous parental origins, consistent with Druze oral tradition, together with both a high frequency and a high diversity of the mitochondrial DNA (mtDNA) X haplogroup within a confined regional subpopulation. Furthermore demographic modeling indicated low migration rates with nearby populations. CONCLUSIONS: These findings were enabled through the use of a paternal kindred based sampling approach, and suggest that the Galilee Druze represent a population isolate, and that the combination of a high frequency and diversity of the mtDNA X haplogroup signifies a phylogenetic refugium, providing a sample snapshot of the genetic landscape of the Near East prior to the modern age

    Minor shift in background substitutional patterns in the Drosophila saltans and willistoni lineages is insufficient to explain GC content of coding sequences

    Get PDF
    BACKGROUND: Several lines of evidence suggest that codon usage in the Drosophila saltans and D. willistoni lineages has shifted towards a less frequent use of GC-ending codons. Introns in these lineages show a parallel shift toward a lower GC content. These patterns have been alternatively ascribed to either a shift in mutational patterns or changes in the definition of preferred and unpreferred codons in these lineages. RESULTS AND DISCUSSION: To gain additional insight into this question, we quantified background substitutional patterns in the saltans/willistoni group using inactive copies of a novel, Q-like retrotransposable element. We demonstrate that the pattern of background substitutions in the saltans/willistoni lineage has shifted to a significant degree, primarily due to changes in mutational biases. These differences predict a lower equilibrium GC content in the genomes of the saltans/willistoni species compared with that in the D. melanogaster species group. The magnitude of the difference can readily account for changes in intronic GC content, but it appears insufficient to explain changes in codon usage within the saltans/willistoni lineage. CONCLUSION: We suggest that the observed changes in codon usage in the saltans/willistoni clade reflects either lineage-specific changes in the definitions of preferred and unpreferred codons, or a weaker selective pressure on codon bias in this lineage

    Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Speculation regarding the importance of changes in gene regulation in determining major phylogenetic patterns continues to accrue, despite a lack of broad-scale comparative studies examining how patterns of gene expression vary during development. Comparative transcriptional profiling of adult interspecific hybrids and their parental species has uncovered widespread divergence of the mechanisms controlling gene regulation, revealing incompatibilities that are masked in comparisons between the pure species. However, this has prompted the suggestion that misexpression in adult hybrids results from the downstream cascading effects of a subset of genes improperly regulated in early development.</p> <p>Results</p> <p>We sought to determine how gene expression diverges over development, as well as test the cascade hypothesis, by profiling expression in males of <it>Drosophila melanogaster</it>, <it>D. sechellia</it>, and <it>D. simulans</it>, as well as the <it>D. simulans </it>(♀) × <it>D. sechellia </it>(♂) male F1 hybrids, at four different developmental time points (3rd instar larval, early pupal, late pupal, and newly-emerged adult). Contrary to the cascade model of misexpression, we find that there is considerable stage-specific autonomy of regulatory breakdown in hybrids, with the larval and adult stages showing significantly more hybrid misexpression as compared to the pupal stage. However, comparisons between pure species indicate that genes expressed during earlier stages of development tend to be more conserved in terms of their level of expression than those expressed during later stages, suggesting that while Von Baer's famous law applies at both the level of nucleotide sequence and expression, it may not apply necessarily to the underlying overall regulatory network, which appears to diverge over the course of ontogeny and which can only be ascertained by combining divergent genomes in species hybrids.</p> <p>Conclusion</p> <p>Our results suggest that complex integration of regulatory circuits during morphogenesis may lead to it being more refractory to divergence of underlying gene regulatory mechanisms - more than that suggested by the conservation of gene expression levels between species during earlier stages. This provides support for a 'developmental hourglass' model of divergence of gene expression in <it>Drosophila </it>resulting in a highly conserved pupal stage.</p
    corecore