14 research outputs found

    Fitting the HIV Epidemic in Zambia: A Two-Sex Micro-Simulation Model

    Get PDF
    BACKGROUND: In describing and understanding how the HIV epidemic spreads in African countries, previous studies have not taken into account the detailed periods at risk. This study is based on a micro-simulation model (individual-based) of the spread of the HIV epidemic in the population of Zambia, where women tend to marry early and where divorces are not frequent. The main target of the model was to fit the HIV seroprevalence profiles by age and sex observed at the Demographic and Health Survey conducted in 2001. METHODS AND FINDINGS: A two-sex micro-simulation model of HIV transmission was developed. Particular attention was paid to precise age-specific estimates of exposure to risk through the modelling of the formation and dissolution of relationships: marriage (stable union), casual partnership, and commercial sex. HIV transmission was exclusively heterosexual for adults or vertical (mother-to-child) for children. Three stages of HIV infection were taken into account. All parameters were derived from empirical population-based data. Results show that basic parameters could not explain the dynamics of the HIV epidemic in Zambia. In order to fit the age and sex patterns, several assumptions were made: differential susceptibility of young women to HIV infection, differential susceptibility or larger number of encounters for male clients of commercial sex workers, and higher transmission rate. The model allowed to quantify the role of each type of relationship in HIV transmission, the proportion of infections occurring at each stage of disease progression, and the net reproduction rate of the epidemic (R(0) = 1.95). CONCLUSIONS: The simulation model reproduced the dynamics of the HIV epidemic in Zambia, and fitted the age and sex pattern of HIV seroprevalence in 2001. The same model could be used to measure the effect of changing behaviour in the future

    Effect of variable transmission rate on the dynamics of HIV in sub-Saharan Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cause of the high HIV prevalence in sub-Saharan Africa is incompletely understood, with heterosexual penile-vaginal transmission proposed as the main mechanism. Heterosexual HIV transmission has been estimated to have a very low probability; but effects of cofactors that vary in space and time may substantially alter this pattern.</p> <p>Methods</p> <p>To test the effect of individual variation in the HIV infectiousness generated by co-infection, we developed and analyzed a mathematical sexual network model that simulates the behavioral components of a population from Malawi, as well as the dynamics of HIV and the co-infection effect caused by other infectious diseases, including herpes simplex virus type-2, gonorrhea, syphilis and malaria.</p> <p>Results</p> <p>The analysis shows that without the amplification effect caused by co-infection, no epidemic is generated, and HIV prevalence decreases to extinction. But the model indicates that an epidemic can be generated by the amplification effect on HIV transmission caused by co-infection.</p> <p>Conclusion</p> <p>The simulated sexual network demonstrated that a single value for HIV infectivity fails to describe the dynamics of the epidemic. Regardless of the low probability of heterosexual transmission per sexual contact, the inclusion of individual variation generated by transient but repeated increases in HIV viral load associated with co-infections may provide a biological basis for the accelerated spread of HIV in sub-Saharan Africa. Moreover, our work raises the possibility that the natural history of HIV in sub-Saharan Africa cannot be fully understood if individual variation in infectiousness is neglected.</p

    Introduction: Conceptualizing and Partitioning the Emergence Process of Zoonotic Viruses from Wildlife to Humans

    No full text
    corecore