29 research outputs found

    Water in the electrical double layer of ionic liquids on graphene

    Get PDF
    The performance of electrochemical devices using ionic liquids (ILs) as electrolytes can be impaired by water uptake. This work investigates the influence of water on the behavior of hydrophilic and hydrophobic ILs─with ethylsulfate and tris(perfluoroalkyl)trifluorophosphate or bis(trifluoromethyl sulfonyl)imide (TFSI) anions, respectively─on electrified graphene, a promising electrode material. The results show that water uptake slightly reduces the IL electrochemical stability and significantly influences graphene's potential of zero charge, which is justified by the extent of anion depletion from the surface. Experiments confirm the dominant contribution of graphene's quantum capacitance (CQ) to the total interfacial capacitance (Cint) near the PZC, as expected from theory. Combining theory and experiments reveals that the hydrophilic IL efficiently screens surface charge and exhibits the largest double layer capacitance (CIL ∼ 80 μF cm-2), so that CQ governs the charge stored. The hydrophobic ILs are less efficient in charge screening and thus exhibit a smaller capacitance (CIL ∼ 6-9 μF cm-2), which governs Cint already at small potentials. An increase in the total interfacial capacitance is observed at positive voltages for humid TFSI-ILs relative to dry ones, consistent with the presence of a satellite peak. Short-range surface forces reveal the change of the interfacial layering with potential and water uptake owing to reorientation of counterions, counterion binding, co-ion repulsion, and water enrichment. These results are consistent with the charge being mainly stored in a ∼2 nm-thick double layer, which implies that ILs behave as highly concentrated electrolytes. This knowledge will advance the design of IL-graphene-based electrochemical devices

    Environmental influence on the surface chemistry of ionic-liquid-mediated lubrication in a silica / silicon tribopair

    No full text
    In this study, 1-ethyl-3-methyl imidazolium trifluoro tris(pentafluoroethyl) tris(perfluoroalkyl)trifluorophosphate [EMIM] FAP and 1-hexyl-3-methyl imidazolium tris(pentafluoroethyl) tris(perfluoroalkyl)trifluorophosphate [HMIM] FAP were selected as lubricants for silica/silicon surfaces. Pin-on-disk tribometry was used to test the performance of these lubricants under two different environmental conditions (humid air and a nitrogen atmosphere). The surface reactivity of the ionic liquids under mechanical stress was investigated ex situ by X-ray photoelectron spectroscopy. Environmental conditions appear to affect the mechanism of boundary lubrication in different ways, depending on the contact pressure. Tests carried out at 0.5 N applied load showed low friction and no detectable wear in a nitrogen atmosphere, and a substantial increase in both wear and friction in humid air. It is proposed that the presence of water in the IL induces a change in the structure of the confined lubricant film, leading to contact between the sliding surfaces. At higher load (4.5 N), the observation of wear, both under nitrogen and in humid air, reveals that the film is no longer able to prevent contact between asperities, which now dominates the observed tribological behavior. XP-spectra acquired on samples tribostressed at high load, under the two environmental conditions, reveal evidence for the formation of a reaction layer that is hydrolyzed or oxidized in the presence of water and oxygen, suggesting that the variation of wear with the environment is related to changes in the tribochemical reactions involving the silicon surface

    Influence of environmental humidity on the wear and friction of a silica / silicon tribopair lubricated with a hydrophilic ionic liquid

    No full text
    In this study, the tribological behavior of silica/silicon surfaces lubricated with the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM] EtSO4) was investigated. Tests were carried out in the presence of either humid air (45–55% relative humidity) or in a nitrogen atmosphere, and the results were compared with those obtained using pure water as a lubricant. The cross-sectional analysis of the contact area performed by focused-ion-beam scanning electron microscopy indicated the presence of cracks in the subsurface region, showing that brittle fracture contributed to wear. Sliding promoted the formation of a third body, the presence of which was indicated by optical and secondary electron microscopy. X-ray photoelectron spectroscopy showed that the third body was mostly composed of silicon oxides. The accumulation of the debris was controlled by the presence of water: in the presence of a nitrogen atmosphere, particles were trapped between the sliding surfaces, whereas in the case of humid air, the debris was progressively removed from the contact. Notably, the presence of trapped particles was associated with higher values of wear coefficients of both disks and pins. In addition, a lower roughness was observed along the direction of sliding in the case of water-containing ionic liquid. The observed trends in wear and the combined results of the various techniques, as well as the comparison with tests carried out in the presence of pure water, all point to the characteristic tribochemical reactions of water with silicon-based materials, namely, the formation of a sacrificial layer of hydrated oxide and the dissociative adsorption of water at crack tips of SiO2. In the absence of water, the lack of a tribochemical mechanism forming a sacrificial layer leads to a microfracture-dominated wear mechanism over the entire duration of the test, thus leading to more severe wear. The possible occurrence of stress-induced phase transformation of silicon during sliding is also discusse

    Layering of ionic liquids on rough surfaces

    No full text
    Understanding the behavior of ionic liquids (ILs) either confined between rough surfaces or in rough nanoscale pores is of great relevance to extend studies performed on ideally flat surfaces to real applications. In this work we have performed an extensive investigation of the structural forces between two surfaces with well-defined roughness (<9 nm RMS) in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by atomic force microscopy. Statistical studies of the measured layer thicknesses, layering force, and layering frequency reveal the ordered structure of the rough IL–solid interface. Our work shows that the equilibrium structure of the interfacial IL strongly depends on the topography of the contac

    Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic liquid

    No full text
    With reference to our previous surface-force study on 1-hexyl-3-methylimidazolium ethylsulfate ([HMIM] EtSO4) using an extended surface forces apparatus, which showed an ordered structure within the nanoconfined dry ionic liquid (IL) between mica surfaces that extended up to ∼60 nm from the surface, this work focuses on the influence of the environmental humidity on the bulk, interfacial and nanoconfined structure of [HMIM] EtSO4. Infrared spectroscopy and rheometry reflect the changes in chemical and physical properties of the bulk IL due to the uptake of water when exposed to ambient humidity, while wide-angle X-ray scattering shows a mild swelling of the bulk nanostructure, and the AFM sharp tip reveals an additional surface layer at the mica–IL interface. When the water-containing [HMIM] EtSO4 is nanoconfined between two mica surfaces, no long-range order is detected, in contrast to the results obtained for the dry IL, which demonstrates that the presence of water can prevent the liquid-to-solid transformation of this IL. A combination of techniques and the calculated Bjerrum length indicate that water molecules weaken interionic electrostatic and hydrogen-bonding interactions, which lessens ion–ion correlations. Our work shows that the solid-like behavior of the nanoconfined IL strongly depends on the presence of absorbed water and hence, it has implications with regard to the correct interpretation of laboratory studies and their extension to real applications in lubricatio
    corecore