225 research outputs found

    Diabetes-related excess mortality in Mexico: a comparative analysis of National Death Registries between 2017-2019 and 2020

    Get PDF
    OBJECTIVE: To estimate diabetes-related mortality in Mexico in 2020 compared with 2017-2019 after the onset of the coronavirus disease 2019 (COVID-19) pandemic. RESEARCH DESIGN AND METHODS: This retrospective, state-level study used national death registries of Mexican adults aged ≥20 years for the 2017-2020 period. Diabetes-related death was defined using ICD-10 codes listing diabetes as the primary cause of death, excluding certificates with COVID-19 as the primary cause of death. Spatial and negative binomial regression models were used to characterize the geographic distribution and sociodemographic and epidemiologic correlates of diabetes-related excess mortality, estimated as increases in diabetes-related mortality in 2020 compared with average 2017-2019 rates. RESULTS: We identified 148,437 diabetes-related deaths in 2020 (177 per 100,000 inhabitants) vs. an average of 101,496 deaths in 2017-2019 (125 per 100,000 inhabitants). In-hospital diabetes-related deaths decreased by 17.8% in 2020 versus 2017-2019, whereas out-of-hospital deaths increased by 89.4%. Most deaths were attributable to type 2 diabetes (130 per 100,000 inhabitants). Compared with 2018-2019 data, hyperglycemic hyperosmolar state and diabetic ketoacidosis were the two contributing causes with the highest increase in mortality (128% and 116% increase, respectively). Diabetes-related excess mortality clustered in southern Mexico and was highest in states with higher social lag, rates of COVID-19 hospitalization, and prevalence of HbA1c ≥7.5%. CONCLUSIONS: Diabetes-related deaths increased among Mexican adults by 41.6% in 2020 after the onset of the COVID-19 pandemic, occurred disproportionately outside the hospital, and were largely attributable to type 2 diabetes and hyperglycemic emergencies. Disruptions in diabetes care and strained hospital capacity may have contributed to diabetes-related excess mortality in Mexico during 2020

    hHSS1: a novel secreted factor and suppressor of glioma growth located at chromosome 19q13.33

    Get PDF
    The completion of the Human Genome Project resulted in discovery of many unknown novel genes. This feat paved the way for the future development of novel therapeutics for the treatment of human disease based on novel biological functions and pathways. Towards this aim, we undertook a bioinformatics analysis of in-house microarray data derived from purified hematopoietic stem cell populations. This effort led to the discovery of HSS1 (Hematopoietic Signal peptide-containing Secreted 1) and its splice variant HSM1 (Hematopoietic Signal peptide-containing Membrane domain-containing 1). HSS1 gene is evolutionarily conserved across species, phyla and even kingdoms, including mammals, invertebrates and plants. Structural analysis showed no homology between HSS1 and known proteins or known protein domains, indicating that it was a truly novel protein. Interestingly, the human HSS1 (hHSS1) gene is located at chromosome 19q13.33, a genomic region implicated in various cancers, including malignant glioma. Stable expression of hHSS1 in glioma-derived A172 and U87 cell lines greatly reduced their proliferation rates compared to mock-transfected cells. hHSS1 expression significantly affected the malignant phenotype of U87 cells both in vitro and in vivo. Further, preliminary immunohistochemical analysis revealed an increase in hHSS1/HSM1 immunoreactivity in two out of four high-grade astrocytomas (glioblastoma multiforme, WHO IV) as compared to low expression in all four low-grade diffuse astrocytomas (WHO grade II). High-expression of hHSS1 in high-grade gliomas was further supported by microarray data, which indicated that mesenchymal subclass gliomas exclusively up-regulated hHSS1. Our data reveal that HSS1 is a truly novel protein defining a new class of secreted factors, and that it may have an important role in cancer, particularly glioma

    Search for the standard model Higgs boson at LEP

    Get PDF

    Hypertension and type 2 diabetes: What family physicians can do to improve control of blood pressure - an observational study

    Get PDF
    Background: The prevalence of type 2 diabetes is rising, and most of these patients also have hypertension, substantially increasing the risk of cardiovascular morbidity and mortality. The majority of these patients do not reach target blood pressure levels for a wide variety of reasons. When a literature review provided no clear focus for action when patients are not at target, we initiated a study to identify characteristics of patients and providers associated with achieving target BP levels in community-based practice. Methods: We conducted a practice- based, cross-sectional observational and mailed survey study. The setting was the practices of 27 family physicians and nurse practitioners in 3 eastern provinces in Canada. The participants were all patients with type 2 diabetes who could understand English, were able to give consent, and would be available for follow-up for more than one year. Data were collected from each patient’s medical record and from each patient and physician/nurse practitioner by mailed survey. Our main outcome measures were overall blood pressure at target (< 130/80), systolic blood pressure at target, and diastolic blood pressure at target. Analysis included initial descriptive statistics, logistic regression models, and multivariate regression using hierarchical nonlinear modeling (HNLM). Results: Fifty-four percent were at target for both systolic and diastolic pressures. Sixty-two percent were at systolic target, and 79% were at diastolic target. Patients who reported eating food low in salt had higher odds of reaching target blood pressure. Similarly, patients reporting low adherence to their medication regimen had lower odds of reaching target blood pressure. Conclusions: When primary care health professionals are dealing with blood pressures above target in a patient with type 2 diabetes, they should pay particular attention to two factors. They should inquire about dietary salt intake, strongly emphasize the importance of reduction, and refer for detailed counseling if necessary. Similarly, they should inquire about adherence to the medication regimen, and employ a variety of patient-oriented strategies to improve adherence

    Multilineage hematopoietic recovery with concomitant antitumor effects using low dose Interleukin-12 in myelosuppressed tumor-bearing mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-12 (IL-12) is a cytokine well known for its role in immunity. A lesser known function of IL-12 is its role in hematopoiesis. The promising data obtained in the preclinical models of antitumor immunotherapy raised hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity, largely due to repeat dose regimens, and modest clinical response observed in the clinical trials have pointed to the necessity to design protocols that minimize toxicity without affecting the anti-tumor effect of IL-12. We have focused on the lesser known role of IL-12 in hematopoiesis and hypothesized that an important clinical role for IL-12 in cancer may be as an adjuvant hematological cancer therapy. In this putative clinical function, IL-12 is utilized for the prevention of cancer therapy-related cytopenias, while providing concomitant anti-tumor responses over and above responses observed with the primary therapy alone. This putative clinical function of IL-12 focuses on the dual role of IL-12 in hematopoiesis and immunity.</p> <p>Methods</p> <p>We assessed the ability of IL-12 to facilitate hematopoietic recovery from radiation (625 rad) and chemotherapy (cyclophosphamide) in two tumor-bearing murine models, namely the EL4 lymphoma and the Lewis lung cancer models. Antitumor effects and changes in bone marrow cellularity were also assessed.</p> <p>Results</p> <p>We show herein that carefully designed protocols, in mice, utilizing IL-12 as an adjuvant to radiation or chemotherapy yield facile and consistent, multilineage hematopoietic recovery from cancer therapy-induced cytopenias, as compared to vehicle and the clinically-utilized cytokine granulocyte colony-stimulating factor (G-CSF) (positive control), while still providing concomitant antitumor responses over and above the effects of the primary therapy alone. Moreover, our protocol design utilizes single, low doses of IL-12 that did not yield any apparent toxicity.</p> <p>Conclusion</p> <p>Our results portend that despite its past failure, IL-12 appears to have significant clinical potential as a hematological adjuvant cancer therapy.</p

    Multiple Advantageous Amino Acid Variants in the NAT2 Gene in Human Populations

    Get PDF
    Background: Genetic variation at NAT2 has been long recognized as the cause of differential ability to metabolize a wide variety of drugs of therapeutic use. Here, we explore the pattern of genetic variation in 12 human populations that significantly extend the geographic range and resolution of previous surveys, to test the hypothesis that different dietary regimens and lifestyles may explain inter-population differences in NAT2 variation. Methodology/Principal Findings: The entire coding region was resequenced in 98 subjects and six polymorphic positions were genotyped in 150 additional subjects. A single previously undescribed variant was found (34T>C; 12Y>H). Several aspects of the data do not fit the expectations of a neutral model, as assessed by coalescent simulations. Tajima's D is positive in all populations, indicating an excess of intermediate alleles. The level of between-population differentiation is low, and is mainly accounted for by the proportion of fast vs. slow acetylators. However, haplotype frequencies significantly differ across groups of populations with different subsistence. Conclusions/Significance: Data on the structure of haplotypes and their frequencies are compatible with a model in which slow-causing variants were present in widely dispersed populations before major shifts to pastoralism and/or agriculture. In this model, slow-causing mutations gained a selective advantage in populations shifting from hunting-gathering to pastoralism/agriculture. We suggest the diminished dietary availability of folates resulting from the nutritional shift, as the possible cause of the fitness increase associated to haplotypes carrying mutations that reduce enzymatic activity. © 2008 Luca et al

    Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery

    Get PDF
    Chagas' disease is responsible for significant mortality and morbidity in Latin America. Current treatments display variable efficacy and have adverse side effects, hence more effective, better tolerated drugs are needed. However, recent efforts have proved unsuccessful with failure of the ergosterol biosynthesis inhibitor posaconazole in phase II clinical trials despite promising in vitro and in vivo studies. The lack of translation between laboratory experiments and clinical outcome is a major issue for further drug discovery efforts. Our goal was to identify cell-based assays that could differentiate current nitro-aromatic drugs nifurtimox and benznidazole from posaconazole. Using a panel of T. cruzi strains including the six major lineages (TcI-VI), we found that strain PAH179 (TcV) was markedly less susceptible to posaconazole in vitro. Determination of parasite doubling and cycling times as well as EdU labelling experiments all indicate that this lack of sensitivity is due to the slow doubling and cycling time of strain PAH179. This is in accordance with ergosterol biosynthesis inhibition by posaconazole leading to critically low ergosterol levels only after multiple rounds of division, and is further supported by the lack of effect of posaconazole on the non-replicative trypomastigote form. A washout experiment with prolonged posaconazole treatment showed that, even for more rapidly replicating strains, this compound cannot clear all parasites, indicative of a heterogeneous parasite population in vitro and potentially the presence of quiescent parasites. Benznidazole in contrast was able to kill all parasites. The work presented here shows clear differentiation between the nitro-aromatic drugs and posaconazole in several assays, and suggests that in vitro there may be clinically relevant heterogeneity in the parasite population that can be revealed in long-term washout experiments. Based on these findings we have adjusted our in vitro screening cascade so that only the most promising compounds are progressed to in vivo experiments

    Chemical–Genetic Profiling of Imidazo[1,2-a]pyridines and -Pyrimidines Reveals Target Pathways Conserved between Yeast and Human Cells

    Get PDF
    Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical–genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure–activity relationships
    corecore