5,520 research outputs found
Accurate Pulmonary Nodule Detection in Computed Tomography Images Using Deep Convolutional Neural Networks
Early detection of pulmonary cancer is the most promising way to enhance a
patient's chance for survival. Accurate pulmonary nodule detection in computed
tomography (CT) images is a crucial step in diagnosing pulmonary cancer. In
this paper, inspired by the successful use of deep convolutional neural
networks (DCNNs) in natural image recognition, we propose a novel pulmonary
nodule detection approach based on DCNNs. We first introduce a deconvolutional
structure to Faster Region-based Convolutional Neural Network (Faster R-CNN)
for candidate detection on axial slices. Then, a three-dimensional DCNN is
presented for the subsequent false positive reduction. Experimental results of
the LUng Nodule Analysis 2016 (LUNA16) Challenge demonstrate the superior
detection performance of the proposed approach on nodule detection(average
FROC-score of 0.891, ranking the 1st place over all submitted results).Comment: MICCAI 2017 accepte
Two-Stage Convolutional Neural Network for Breast Cancer Histology Image Classification
This paper explores the problem of breast tissue classification of microscopy
images. Based on the predominant cancer type the goal is to classify images
into four categories of normal, benign, in situ carcinoma, and invasive
carcinoma. Given a suitable training dataset, we utilize deep learning
techniques to address the classification problem. Due to the large size of each
image in the training dataset, we propose a patch-based technique which
consists of two consecutive convolutional neural networks. The first
"patch-wise" network acts as an auto-encoder that extracts the most salient
features of image patches while the second "image-wise" network performs
classification of the whole image. The first network is pre-trained and aimed
at extracting local information while the second network obtains global
information of an input image. We trained the networks using the ICIAR 2018
grand challenge on BreAst Cancer Histology (BACH) dataset. The proposed method
yields 95 % accuracy on the validation set compared to previously reported 77 %
accuracy rates in the literature. Our code is publicly available at
https://github.com/ImagingLab/ICIAR2018Comment: 10 pages, 5 figures, ICIAR 2018 conferenc
Improving Prostate Cancer Detection with Breast Histopathology Images
Deep neural networks have introduced significant advancements in the field of
machine learning-based analysis of digital pathology images including prostate
tissue images. With the help of transfer learning, classification and
segmentation performance of neural network models have been further increased.
However, due to the absence of large, extensively annotated, publicly available
prostate histopathology datasets, several previous studies employ datasets from
well-studied computer vision tasks such as ImageNet dataset. In this work, we
propose a transfer learning scheme from breast histopathology images to improve
prostate cancer detection performance. We validate our approach on annotated
prostate whole slide images by using a publicly available breast histopathology
dataset as pre-training. We show that the proposed cross-cancer approach
outperforms transfer learning from ImageNet dataset.Comment: 9 pages, 2 figure
On “The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs”
Extensions of the Kruskal-Wallis procedure for a factorial design are reviewed and researched under various degrees and kinds of nonnullity. It was found that the distributions of these test statistics are a Function of effects other than those being tested except under the completely null situation and their use is discouraged.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Deep Convolutional Neural Networks for Breast Cancer Histology Image Analysis
Breast cancer is one of the main causes of cancer death worldwide. Early
diagnostics significantly increases the chances of correct treatment and
survival, but this process is tedious and often leads to a disagreement between
pathologists. Computer-aided diagnosis systems showed potential for improving
the diagnostic accuracy. In this work, we develop the computational approach
based on deep convolution neural networks for breast cancer histology image
classification. Hematoxylin and eosin stained breast histology microscopy image
dataset is provided as a part of the ICIAR 2018 Grand Challenge on Breast
Cancer Histology Images. Our approach utilizes several deep neural network
architectures and gradient boosted trees classifier. For 4-class classification
task, we report 87.2% accuracy. For 2-class classification task to detect
carcinomas we report 93.8% accuracy, AUC 97.3%, and sensitivity/specificity
96.5/88.0% at the high-sensitivity operating point. To our knowledge, this
approach outperforms other common methods in automated histopathological image
classification. The source code for our approach is made publicly available at
https://github.com/alexander-rakhlin/ICIAR2018Comment: 8 pages, 4 figure
Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet
Skin cancer, a major form of cancer, is a critical public health problem with
123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma
cases worldwide each year. The leading cause of skin cancer is high exposure of
skin cells to UV radiation, which can damage the DNA inside skin cells leading
to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed
visually employing clinical screening, a biopsy, dermoscopic analysis, and
histopathological examination. It has been demonstrated that the dermoscopic
analysis in the hands of inexperienced dermatologists may cause a reduction in
diagnostic accuracy. Early detection and screening of skin cancer have the
potential to reduce mortality and morbidity. Previous studies have shown Deep
Learning ability to perform better than human experts in several visual
recognition tasks. In this paper, we propose an efficient seven-way automated
multi-class skin cancer classification system having performance comparable
with expert dermatologists. We used a pretrained MobileNet model to train over
HAM10000 dataset using transfer learning. The model classifies skin lesion
image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36
percent and top3 accuracy of 95.34 percent. The weighted average of precision,
recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The
model has been deployed as a web application for public use at
(https://saketchaturvedi.github.io). This fast, expansible method holds the
potential for substantial clinical impact, including broadening the scope of
primary care practice and augmenting clinical decision-making for dermatology
specialists.Comment: This is a pre-copyedited version of a contribution published in
Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R.,
Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The
definitive authentication version is available online via
https://doi.org/10.1007/978-981-15-3383-9_1
Expression of Drug Targets in Patients Treated with Sorafenib, Carboplatin and Paclitaxel
Introduction: Sorafenib, a multitarget kinase inhibitor, targets members of the mitogen-activated protein kinase (MAPK) pathway and VEGFR kinases. Here we assessed the association between expression of sorafenib targets and biomarkers of taxane sensitivity and response to therapy in pre-treatment tumors from patients enrolled in ECOG 2603, a phase III comparing sorafenib, carboplatin and paclitaxel (SCP) to carboplatin, paclitaxel and placebo (CP). Methods: Using a method of automated quantitative analysis (AQUA) of in situ protein expression, we quantified expression of VEGF-R2, VEGF-R1, VEGF-R3, FGF-R1, PDGF-Rβ, c-Kit, B-Raf, C-Raf, MEK1, ERK1/2, STMN1, MAP2, EB1 and Bcl-2 in pretreatment specimens from 263 patients. Results: An association was found between high FGF-R1 and VEGF-R1 and increased progression-free survival (PFS) and overall survival (OS) in our combined cohort (SCP and CP arms). Expression of FGF-R1 and VEGF-R1 was higher in patients who responded to therapy ((CR+PR) vs. (SD+PD+ un-evaluable)). Conclusions: In light of the absence of treatment effect associated with sorafenib, the association found between FGF-R1 and VEGF-R1 expression and OS, PFS and response might reflect a predictive biomarker signature for carboplatin/paclitaxel-based therapy. Seeing that carboplatin and pacitaxel are now widely used for this disease, corroboration in another cohort might enable us to improve the therapeutic ratio of this regimen. © 2013 Jilaveanu et al
- …