16 research outputs found

    Synthesis and Crystal Structure of a Copper(II) Benzoate Complex Bearing a Bis-2,2′-Tetrahydrofuryl Peroxide Moiety

    Get PDF
    Complex [Cu2(ben)4·2THF−(η1–O2)]∞ (2) (ben=C6H5CO2− benzoate; THF=tetrahydrofuran) was isolated when a solution of Cu2(ben)4·2THF (1) in THF upon natural sunlight irradiation yields crystals suitable for single-crystal X-ray diffraction analysis. 2, crystallized in the C2/c monoclinic space group, Z=8, V=3394.2 (4) Å3, and the unit cell parameters a=9.7935(7) Å, b=19.0055 (13) Å, c=18.2997 (13) Å, α=90°, β=94.7996 (11)º and γ=90°. This is the first example of a polymeric copper(II) carboxylate compound stabilizing a peroxo group via its apical ligand (THF molecule). Additionally, 2 was also characterized by elemental analysis, Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopyUniversidad de Costa Rica/[804-B7-279]/UCR/Costa RicaUniversidad de Costa Rica/[804-B0-650]/UCR/Costa RicaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de QuímicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Electroquímica y Energía Química (CELEQ

    Stable prenucleation mineral clusters are liquid-like ionic polymers

    Get PDF
    Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate

    Rat mast cell protease-I enhances immunoglobulin E production by mouse B cells stimulated with interleukin-4

    No full text
    Mast cell chymase plays important roles in inflammation and tissue remodeling. Here we show that mast cell chymase also functions as an enhancer of immunoglobulin production. In the culture of murine spleen cells stimulated with lipopolysaccharide and interleukin-4, purified rat chymase (rat mast cell protease-I; RMCP-I), at physiological concentrations, enhanced immunoglobulin E (IgE) and IgG1 syntheses but not IgG3 synthesis. The enhancement was also evident when spleen cells depleted of T cells and macrophages were employed as responding cells. Enzymatic activity of RMCP-I was required to enhance IgE and IgG1, because two inhibitors for chymotryptic enzymes, chymostatin and Y-40613, a novel chymase inhibitor, suppressed the enhanced immunoglobulin production, and phenylmethylsulphonyl fluoride, an irreversible inhibitor for serine proteases, totally abolished the enhancing effect. Furthermore, a specific inhibitor for Zn(2+)-dependent metalloproteases, GI 129471, could also completely inhibit the production of IgE and IgG1 that was enhanced by RMCP-I, suggesting that a metalloprotease also played an essential role in the immunoglobulin production. Our results together with others show that proteases from mast cell granules have important function not only in the efferent phase but also in the afferent phase of immune responses

    The HF Dimer: Potential Energy Surface and Dynamical Processes

    No full text
    corecore