50 research outputs found

    The Effects of Copper Pollution on Fouling Assemblage Diversity: A Tropical-Temperate Comparison

    Get PDF
    BACKGROUND: The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered as a class of disturbance with anthropogenic roots and recent studies have concluded that high frequencies of disturbance may facilitate invasions by increasing the availability of resources. METHODOLOGY/PRINCIPAL FINDINGS: To examine the effects of heavy metal pollution as disturbance in shaping patterns of exotic versus native diversity in marine fouling communities we exposed fouling communities to different concentrations of copper in one temperate (Virginia) and one tropical (Panama) region. Diversity was categorized as total, native and non-indigenous and we also incorporated taxonomic and functional richness. Our findings indicate that total fouling diversity decreased with increasing copper pollution, whether taxonomic or functional diversity is considered. Both native and non-indigenous richness decreased with increasing copper concentrations at the tropical site whereas at the temperate site, non-indigenous richness was too low to detect any effect. CONCLUSIONS/SIGNIFICANCE: Non-indigenous richness decreased with increasing metal concentrations, contradicting previous investigations that evaluate the influence of heavy metal pollution on diversity and invasibility of fouling assemblages. These results provide first insights on how the invasive species pool in a certain region may play a key role in the disturbance vs. non-indigenous diversity relationship

    SKIN CHANGES IN NEONATES DURING EARLY NEONATAL PERIOD

    No full text

    A standard for test reliability in group research

    Get PDF
    Contains fulltext : 116585.pdf (publisher's version ) (Open Access)Many authors adhere to the rule that test reliabilities should be at least .70 or .80 in group research. This article introduces a new standard according to which reliabilities can be evaluated. This standard is based on the costs or time of the experiment and of administering the test. For example, if test administration costs are 7 % of the total experimental costs, the efficient value of the reliability is .93. If the actual reliability of a test is equal to this efficient reliability, the test size maximizes the statistical power of the experiment, given the costs. As a standard in experimental research, it is proposed that the reliability of the dependent variable be close to the efficient reliability. Adhering to this standard will enhance the statistical power and reduce the costs of experiments.9 p
    corecore