23 research outputs found
Consensus Paper: Cerebellum and Social Cognition.
The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions
Nesting ecology of Podocnemis expansa (Schweigger, 1812) and Podocnemis unifilis (Troschel, 1848) (Testudines, Podocnemididae) in the Javaés River, Brazil
Nest site has influence on incubation duration and hatching success of two Neotropical turtles, the Giant Amazon River Turtle (Podocnemis expansa) and Yellow-Spotted Side-Neck Turtle (Podocnemis unifilis - "Tracajá"). The 2000 and 2001 nesting seasons have been monitored at the Javaés River in Bananal Island, Brazil. Although they nest on the same beaches, there is a separation of the nesting areas of P unifilis and P. expansa nests on the upper parts of the beach. The incubation duration for P. expansa is influenced by the nesting period, the height of the nest from the river, the clutch size, and the grain size in the site of the nest. Nests of Podocnemis expansa placed in coarse sediments have shorter incubation duration than those placed in finer sediments. The hatching success in P. expansa is influenced by grain size, incubation duration, and nesting period. The grain size is negatively correlated with hatching success, indicating that the nests situated in finer-grained sand have better chances of successful egg hatching than those in coarser-grained sand. Nests of the end of the reproductive season have lower hatching success and incubation duration than those at the start of the season. For P. unifilis, the nesting period and nest depth influence the incubation duration; moreover, the river dynamics significantly affect the hatching success. The oscillation of the river level and the moment of initial increase, the height of the nest from the river level, and the nesting period are all decisive components for hatching success. The results of this research show the importance of protecting areas with great geological diversity, wherein the features of the environment can affect the microenvironment of nests, with consequences on incubation duration and hatching success
C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response
Research on the involvement of C1D and its yeast homologues Rrp47 (S. cerevisiae) and Cti1 (S. pombe) in DNA damage repair and RNA processing has remained mutually exclusive, with most studies predominantly concentrating on Rrp47. This review will look to reconcile the functions of these proteins in their involvement with the RNA exosome, in the regulation of chromatin architecture, and in the repair of DNA double-strand breaks, focusing on non-homologous end joining and homologous recombination. We propose that C1D is situated in a central position to maintain genomic stability at highly transcribed gene loci by coordinating these processes through the timely recruitment of relevant regulatory factors. In the event that the damage is beyond repair, C1D induces apoptosis in a p53-dependent manner