30 research outputs found

    The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene

    Get PDF
    The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the β€œmouse PPCD1” phenotype and mapped the mouse locus for this phenotype, designated β€œPpcd1”, to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bptm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD

    Mechanisms of Resistance to Decitabine in the Myelodysplastic Syndrome

    Get PDF
    Purpose: The DNA methylation inhibitor 5-aza-29-deoxycytidine (DAC) is approved for the treatment of myelodysplastic syndromes (MDS), but resistance to DAC develops during treatment and mechanisms of resistance remain unknown. Therefore, we investigated mechanisms of primary and secondary resistance to DAC in MDS. Patients and Methods: We performed Quantitative Real-Time PCR to examine expression of genes related to DAC metabolism prior to therapy in 32 responders and non-responders with MDS as well as 14 patients who achieved a complete remission and subsequently relapsed while on therapy (secondary resistance). We then performed quantitative methylation analyses by bisulfite pyrosequencing of 10 genes as well as Methylated CpG Island Amplification Microarray (MCAM) analysis of global methylation in secondary resistance. Results: Most genes showed no differences by response, but the CDA/DCK ratio was 3 fold higher in non-responders than responders (P,.05), suggesting that this could be a mechanism of primary resistance. There were no significant differences at relapse in DAC metabolism genes, and no DCK mutations were detected. Global methylation measured by the LINE1 assay was lower at relapse than at diagnosis (P,.05). On average, the methylation of 10 genes was lower at relapse (16.1%) compared to diagnosis (18.1%) (P,.05).MCAM analysis showed decreased methylation of an average of 4.5 % (range 0.6%– 9.7%) of the genes at relapse. By contrast, new cytogenetic changes were found in 20 % of patients

    The Notch pathway in ovarian carcinomas and adenomas

    Get PDF
    Elements of the Notch pathway regulate differentiation; we investigated the expression of such elements in epithelial ovarian tumours. A total of 32 ovarian tumour samples (17 adenocarcinomas, three borderline tumours, 12 adenomas), two human ovarian cancer (A2780, OVCAR3), and one ovarian surface (IOSE 144) cell lines were analysed. The expression of Notch pathway elements was assessed by RT–PCR, real-time PCR (Notch 1), and by immunoblots (Notch 1 extracellular domain (EC), HES1). The proliferation and colony formation of A2780 cells were measured after stable transfection with activated Notch 1 (intracellular domain). Jagged 2, Delta-like-1, Manic Fringe, and TSL1 were expressed more frequently in adenocarcinomas whereas Deltex, Mastermind, and Radical Fringe were more frequent in adenomas. Quantitative PCR revealed decreased Notch 1 mRNA in ovarian adenocarcinomas compared with adenomas. The expression of Notch 1-EC protein was similar in benign and malignant tumours. HES1 protein was strongly expressed in 18/19 ovarian cancers and borderline tumours but not in adenomas. Transfecting A2780 cells with active Notch 1-IC resulted in a proliferative and colony formation advantage compared to mock transfected cells. Thus, Notch pathway elements are expressed in ovarian epithelial tumours and some of them are differentially expressed between adenomas and carcinomas. The Notch pathway could be a target for the development of therapies for ovarian cancer
    corecore