219 research outputs found

    A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Get PDF
    BACKGROUND: Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca(2+ )stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca(2+ )in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC) or receptor operated channels (ROC). Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca(2+ )stores. The mechanism underlying SOC activation following depletion of intracellular Ca(2+ )stores in smooth muscle has not been identified. METHODS: To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. RESULTS: Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70%) of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca(2+ )influx in response to store depletion by cyclopiazonic acid (60%) or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. CONCLUSION: Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca(2+ )store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model

    Long-term reductions in tinnitus severity

    Get PDF
    BACKGROUND: This study was undertaken to assess long-term changes in tinnitus severity exhibited by patients who completed a comprehensive tinnitus management program; to identify factors that contributed to changes in tinnitus severity within this population; to contribute to the development and refinement of effective assessment and management procedures for tinnitus. METHODS: Detailed questionnaires were mailed to 300 consecutive patients prior to their initial appointment at the Oregon Health & Science University Tinnitus Clinic. All patients were then evaluated and treated within a comprehensive tinnitus management program. Follow-up questionnaires were mailed to the same 300 patients 6 to 36 months after their initial tinnitus clinic appointment. RESULTS: One hundred ninety patients (133 males, 57 females; mean age 57 years) returned follow-up questionnaires 6 to 36 months (mean = 22 months) after their initial tinnitus clinic appointment. This group of patients exhibited significant long-term reductions in self-rated tinnitus loudness, Tinnitus Severity Index scores, tinnitus-related anxiety and prevalence of current depression. Patients who improved their sleep patterns or Beck Depression Inventory scores exhibited greater reductions of tinnitus severity scores than patients who continued to experience insomnia and depression at follow-up. CONCLUSIONS: Individualized tinnitus management programs that were designed for each patient contributed to overall reductions in tinnitus severity exhibited on follow-up questionnaires. Identification and treatment of patients experiencing anxiety, insomnia or depression are vital components of an effective tinnitus management program. Utilization of acoustic therapy also contributed to improvements exhibited by these patients

    Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Agonist stimulation of airway smooth muscle (ASM) results in IP<sub>3 </sub>mediated Ca<sup>2+ </sup>release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na<sup>+ </sup>influx. This localised increase in Na<sup>+ </sup>levels can potentially switch the Na<sup>+</sup>/Ca<sup>2+ </sup>exchanger into reverse mode and so result in a further influx of Ca<sup>2+</sup>. The aim of this study was to characterise the expression and physiological function of the Na<sup>+</sup>/Ca<sup>2+ </sup>exchanger in cultured human bronchial smooth muscle cells and determine its contribution to agonist induced Ca<sup>2+ </sup>influx into these cells.</p> <p>Methods</p> <p>The expression profile of NCX (which encodes the Na<sup>+</sup>/Ca<sup>2+ </sup>exchanger) homologues in cultured human bronchial smooth muscle cells was determined by reverse transcriptase PCR. The functional activity of reverse mode NCX was investigated using a combination of whole cell patch clamp, intracellular Ca<sup>2+ </sup>measurements and porcine airway contractile analyses. KB-R7943 (an antagonist for reverse mode NCX) and target specific siRNA were utilised as tools to inhibit NCX function.</p> <p>Results</p> <p>NCX1 protein was detected in cultured human bronchial smooth muscle cells (HBSMC) cells and NCX1.3 was the only mRNA transcript variant detected. A combination of intracellular Na<sup>+ </sup>loading and addition of extracellular Ca<sup>2+ </sup>induced an outwardly rectifying current which was augmented following stimulation with histamine. This outwardly rectifying current was inhibited by 10 μM KB-R7943 (an antagonist of reverse mode NCX1) and was reduced in cells incubated with siRNA against NCX1. Interestingly, this outwardly rectifying current was also inhibited following knockdown of STIM1, suggesting for the first time a link between store operated cation entry and NCX1 activation. In addition, 10 μM KB-R7943 inhibited agonist induced changes in cytosolic Ca<sup>2+ </sup>and induced relaxation of porcine peripheral airways.</p> <p>Conclusions</p> <p>Taken together, these data demonstrate a potentially important role for NCX1 in control of Ca<sup>2+ </sup>homeostasis and link store depletion via STIM1 directly with NCX activation.</p

    Study of the therapeutic effects of an advanced hippotherapy simulator in children with cerebral palsy: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although hippotherapy treatment has been demonstrated to have therapeutic effects on children with cerebral palsy, the samples used in research studies have been very small. In the case of hippotherapy simulators, there are no studies that either recommend or advise against their use in the treatment of children with cerebral palsy. The aim of this randomised clinical study is to analyse the therapeutic effects or the contraindications of the use of a commercial hippotherapy simulator on several important factors relating to children with cerebral palsy such as their motor development, balance control in the sitting posture, hip abduction range of motion and electromyographic activity of adductor musculature.</p> <p>Methods/Design</p> <p>The study is a randomised controlled trial. It will be carried out with a sample of 37 children with cerebral palsy divided into two treatment groups. Eligible participants will be randomly allocated to receive either (a) Treatment Group with hippotherapy simulator, maintaining sitting posture, with legs in abduction and rhythmic movement of the simulator or (b) Treatment Group maintaining sitting posture, with legs in abduction and without rhythmic movement of the simulator. Data collection and analysis: all measurements will be carried out by a specially trained blind assessor. To ensure standardization quality of the assessors, an inter-examiner agreement will be worked out at the start of the study. The trial is funded by the Department of Research, Innovation and Development of the Regional Government of Aragon (Official Bulletin of Aragon 23 July 2007), project number PM059/2007.</p> <p>Discussion</p> <p>Interest in this project is due to the following factors: Clinical originality (there are no previous studies analysing the effect of simulators on the population group of children with CP, nor any studies using as many variables as this project); Clinical impact (infantile cerebral palsy is a chronic multisystemic condition that affects not only the patient but also the patient's family and their close circle of friends); Practical benefits (the development of an effective treatment is very important for introducing this element into the rehabilitation of these children).</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN03663478.</p

    Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation.

    Get PDF
    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.A special acknowledgement to Karl Deisseroth from Stanford University, for providing viral constructs and for comments on the manuscript, and to Alan Dorval from the University of Utah, for providing mouse strains. Thanks to Luis Jacinto, Joao Oliveira and Joana Silva that helped in some technical aspects of the experiments. C.S.-C., B.C., A.D.-P. and S.B. are recipients of Fundacao para a Ciencia e Tecnologia (FCT) fellowships (SFRH/BD/51992/2012; SFRH/BD/98675/2013; SFRH/BD/90374/2012; SFRH/BD/89936/2012). A.J.R. is a FCT Investigator (IF/00883/2013). This work was co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER). Part of the work was supported by the Janssen Neuroscience Prize (1st edition).info:eu-repo/semantics/publishedVersio

    Whole-cell and single-channel α 1 β 1 γ 2S GABA A receptor currents elicited by a ”multipuffer” drug application device

    Full text link
     Pharmacological characterization of ion channels and receptors in cultured neurons or transfected cell lines requires microapplication of multiple drug solutions during electrophysiological recording. An ideal device could apply a large number of solutions to a limited area with rapid arrival and removal of drug solutions. We describe a novel ”multipuffer” rapid application device, based on a modified T-tube with a nozzle made from a glass micropipette tip. Drug solutions are drawn via suction from open reservoirs mounted above the recording chamber through the device into a waste trap. Closure of a solenoid valve between the device and the waste trap causes flow of drug solution though the T-tube nozzle. Any number of drug solutions can be applied with rapid onset (50–100 ms) after a brief fixed delay (100–200 ms). Recombinant α 1 β 1 γ 2S GABA A receptors (GABARs) transfected into L929 fibroblasts were recorded using whole-cell and single-channel configurations. Application of GABA resulted in chloride currents with an EC 50 of 12.2 μM and a Hill slope of 1.27, suggesting more than one binding site for GABA. GABAR currents were enhanced by diazepam and pentobarbital and inhibited by bicuculline and picrotoxin. Single-channel recordings revealed a main conductance state of 26–28 pS. This device is particularly suitable for rapid, spatially controlled drug applications onto neurons or other cells recorded in the whole-cell configuration, but is also appropriate for isolated single-channel or multichannel membrane patch recordings.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42242/1/424-432-6-1080_64321080.pd

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Germ Line Origin and Somatic Mutations Determine the Target Tissues in Systemic AL-Amyloidosis

    Get PDF
    BACKGROUND: Amyloid is insoluble aggregated proteins deposited in the extra cellular space. About 25 different proteins are known to form amyloid in vivo and are associated with severe diseases such as Alzheimer's disease, prion diseases and type-2 diabetes. Light chain (AL) -amyloidosis is unique among amyloid diseases in that the fibril protein, a monoclonal immunoglobulin light chain, varies between individuals and that no two AL-proteins with identical primary structures have been described to date. The variability in tissue distribution of amyloid deposits is considerably larger in systemic AL-amyloidosis than in any other form of amyloidosis. The reason for this variation is believed to be based on the differences in properties of the amyloidogenic immunoglobulin light chain. However, there is presently no known relationship between the structure of an AL-protein and tissue distribution. METHODOLOGY/PRINCIPAL FINDINGS: We compared the pattern of amyloid deposition in four individuals with amyloid protein derived from variable light chain gene O18-O8, the source of a high proportion of amyloidogenic light chains, and in whom all or most of the fibril protein had been determined by amino acid sequencing. In spite of great similarities between the structures of the proteins, there was a pronounced variability in deposition pattern. We also compared the tissue distribution in these four individuals with that of four other patients with AL-amyloid derived from the L2-L16 gene. Although the interindividual variations were pronounced, liver and kidney involvement was much more evident in the latter four. CONCLUSIONS/SIGNIFICANCE: We conclude that although the use of a specific gene influences the tissue distribution of amyloid, each light chain exhibits one or more determinants of organ-specificity, which originate from somatic mutations and post-translational modifications. Eventual identification of such determinants could lead to improved treatment of patients with AL amyloidosis

    First-Borns Carry a Higher Metabolic Risk in Early Adulthood: Evidence from a Prospective Cohort Study

    Get PDF
    Birth order has been associated with early growth variability and subsequent increased adiposity, but the consequent effects of increased fat mass on metabolic risk during adulthood have not been assessed. We aimed to quantify the metabolic risk in young adulthood of being first-born relative to those born second or subsequently.Body composition and metabolic risk were assessed in 2,249 men, aged 17-19 years, from a birth cohort in southern Brazil. Metabolic risk was assessed using a composite z-score integrating standardized measurements of blood pressure, total cholesterol, high density lipoprotein, triglycerides and fat mass. First-borns had lower birth weight z-score (Δ = -0.25, 95%CI -0.35, -0.15,p<0.001) but showed greater weight gain during infancy (change in weight z-score from birth to 20 months: Δ = 0.39, 95%CI 0.28-0.50, p<0.0001) and had greater mean height (Δ = 1.2 cm, 95%CI: 0.7-1.6, p<0.0001) and weight (Δ = 0.34 kg, 95%CI: 0.13-0.55, p<0.002) at 43 months. This greater weight and height tracked into early adulthood, with first-borns being significantly taller, heavier and with significantly higher fat mass than later-borns. The metabolic risk z-score was significantly higher in first-borns.First-born status is associated with significantly elevated adiposity and metabolic risk in young adult men in Brazil. Our results, linking cardiovascular risk with life history variables, suggest that metabolic risk may be associated with the worldwide trend to smaller family size and it may interact with changes in behavioural or environmental risk factors
    corecore