207 research outputs found

    Genital herpes evaluation by quantitative TaqMan PCR: correlating single detection and quantity of HSV-2 DNA in cervicovaginal lavage fluids with cross-sectional and longitudinal clinical data

    Get PDF
    Abstract Objective To evaluate the utility of a single quantitative PCR (qPCR) measurement of HSV (HSV-1&2) DNA in cervicovaginal lavage (CVL) specimens collected from women with predominantly chronic HSV-2 infection in assessing genital HSV shedding and the clinical course of genital herpes (GH) within a cohort with semiannual schedule of follow up and collection of specimens. Methods Two previously described methods used for detection of HSV DNA in mucocutaneous swab samples were adapted for quantification of HSV DNA in CVLs. Single CVL specimens from 509 women were tested. Presence and quantity of CVL HSV DNA were explored in relation to observed cross-sectional and longitudinal clinical data. Results The PCR assay was sensitive and reproducible with a limit of quantification of ~50 copies per milliliter of CVL. Overall, 7% of the samples were positive for HSV-2 DNA with median log10 HSV-2 DNA copy number of 3.9 (IQR: 2.6-5.7). No HSV-1 was detected. Presence and quantity of HSV-2 DNA in CVL directly correlated with the clinical signs and symptoms of presence of active symptomatic disease with frequent recurrences. Conclusion Single qPCR measurement of HSV DNA in CVL fluids of women with chronic HSV-2 infection provided useful information for assessing GH in the setting of infrequent sampling of specimens. Observed positive correlation of the presence and quantity of HSV-2 DNA with the presence of active and more severe course of HSV-2 infection may have clinical significance in the evaluation and management of HSV-2 infected patients

    Neutrophils Promote Mycobacterial Trehalose Dimycolate-Induced Lung Inflammation via the Mincle Pathway

    Get PDF
    Trehalose 6,6โ€ฒ-dimycolate (TDM), a cord factor of Mycobacterium tuberculosis (Mtb), is an important regulator of immune responses during Mtb infections. Macrophages recognize TDM through the Mincle receptor and initiate TDM-induced inflammatory responses, leading to lung granuloma formation. Although various immune cells are recruited to lung granulomas, the roles of other immune cells, especially during the initial process of TDM-induced inflammation, are not clear. In this study, Mincle signaling on neutrophils played an important role in TDM-induced lung inflammation by promoting adhesion and innate immune responses. Neutrophils were recruited during the early stage of lung inflammation following TDM-induced granuloma formation. Mincle expression on neutrophils was required for infiltration of TDM-challenged sites in a granuloma model induced by TDM-coated-beads. TDM-induced Mincle signaling on neutrophils increased cell adherence by enhancing F-actin polymerization and CD11b/CD18 surface expression. The TDM-induced effects were dependent on Src, Syk, and MAPK/ERK kinases (MEK). Moreover, coactivation of the Mincle and TLR2 pathways by TDM and Pam3CSK4 treatment synergistically induced CD11b/CD18 surface expression, reactive oxygen species, and TNFฮฑ production by neutrophils. These synergistically-enhanced immune responses correlated with the degree of Mincle expression on neutrophil surfaces. The physiological relevance of the Mincle-mediated anti-TDM immune response was confirmed by defective immune responses in Mincleโˆ’/โˆ’ mice upon aerosol infections with Mtb. Mincle-mutant mice had higher inflammation levels and mycobacterial loads than WT mice. Neutrophil depletion with anti-Ly6G antibody caused a reduction in IL-6 and monocyte chemotactic protein-1 expression upon TDM treatment, and reduced levels of immune cell recruitment during the initial stage of infection. These findings suggest a new role of Mincle signaling on neutrophils during anti-mycobacterial responses

    Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    Get PDF
    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more ฮฑ-hydroxy alprazolam (ฮฑ-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both ฮฑ-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of ฮฑ-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of ฮฑ-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action

    Epigenetic silencing and deletion of the BRCA1 gene in sporadic breast cancer

    Get PDF
    INTRODUCTION: BRCA1 or BRCA2 germline mutations increase the risk of developing breast cancer. Tumour cells from germline mutation carriers have frequently lost the wild-type allele. This is predicted to result in genomic instability where cell survival depends upon dysfunctional checkpoint mechanisms. Tumorigenic potential could then be acquired through further genomic alterations. Surprisingly, somatic BRCA mutations are not found in sporadic breast tumours. BRCA1 methylation has been shown to occur in sporadic breast tumours and to be associated with reduced gene expression. We examined the frequency of BRCA1 methylation in 143 primary sporadic breast tumours along with BRCA1 copy number alterations and tumour phenotype. METHODS: Primary sporadic breast tumours were analysed for BRCA1ฮฑ promoter methylation by methylation specific PCR and for allelic imbalance (AI) at BRCA1 and BRCA2 loci by microsatellite analysis and TP53 (also known as p53) mutations by constant denaturing gel electrophoresis. The BRCA1 methylated tumours were analysed for BRCA1 copy alterations by fluorescence in situ hybridisation and BRCA1 expression by immunostaining. RESULTS: BRCA1 methylation was found in 13/143 (9.1%) sporadic breast tumours. The BRCA1 methylated tumours were significantly associated with estrogen receptor (ER) negativity (P = 0.0475) and displayed a trend for BRCA1 AI (P = 0.0731) as well as young-age at diagnosis (โ‰ค 55; P = 0.0898). BRCA1 methylation was not associated with BRCA2 AI (P = 0.5420), although a significant association was found between BRCA1 AI and BRCA2 AI (P < 0.0001). Absent/markedly reduced BRCA1 expression was observed in 9/13 BRCA1 methylated tumours, most of which had BRCA1 deletion. An elevated TP53 mutation frequency was found among BRCA1 methylated tumours (38.5%) compared with non-methylated tumours (17.2%). The BRCA1 methylated tumours were mainly of tumour grade 3 (7/13) and infiltrating ductal type (12/13). Only one methylated tumour was of grade 1. CONCLUSION: BRCA1 methylation is frequent in primary sporadic breast tumours. We found an indication for BRCA1 methylation to be associated with AI at the BRCA1 locus. Almost all BRCA1 methylated tumours with absent/markedly reduced BRCA1 expression (8/9) displayed BRCA1 deletion. Thus, epigenetic silencing and deletion of the BRCA1 gene might serve as Knudson's two 'hits' in sporadic breast tumorigenesis. We observed phenotypic similarities between BRCA1 methylated and familial BRCA1 tumours, based on BRCA1 deletion, TP53 mutations, ER status, young age at diagnosis and tumour grade

    Judah Folkman, a pioneer in the study of angiogenesis

    Get PDF
    More than 30ย years ago, Judah Folkman found a revolutionary new way to think about cancer. He postulated that in order to survive and grow, tumors require blood vessels, and that by cutting off that blood supply, a cancer could be starved into remission. What began as a revolutionary approach to cancer has evolved into one of the most exciting areas of scientific inquiry today. Over the years, Folkman and a growing team of researchers have isolated the proteins and unraveled the processes that regulate angiogenesis. Meanwhile, a new generation of angiogenesis research has emerged as well, widening the field into new areas of human disease and deepening it to examine the underlying biological processes responsible for those diseases

    Spatial Segregation of BMP/Smad Signaling Affects Osteoblast Differentiation in C2C12 Cells

    Get PDF
    BACKGROUND: Bone morphogenetic proteins (BMPs) are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway) and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP) production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an additional mechanism for the cell to respond to BMP in a context specific manner. Moreover, we suggest a novel Smad dependent signal cascade induced by BMP-2, which does not require endocytosis

    Role of Pirh2 in Mediating the Regulation of p53 and c-Myc

    Get PDF
    Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2โˆ’/โˆ’ mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor
    • โ€ฆ
    corecore