24 research outputs found

    Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Materials Science. The final authenticated version is available online at: https://doi.org/10.1007/s10853-017-0853-8A simple phase-field model is used to address anisotropic eutectic freezing on the nanoscale in two (2D) and three dimensions (3D). Comparing parameter-free simulations with experiments, it is demonstrated that the employed model can be made quantitative for Ag-Cu. Next, we explore the effect of material properties, and the conditions of freezing on the eutectic pattern. We find that the anisotropies of kinetic coefficient and the interfacial free energies (solid-liquid and solid-solid), the crystal misorientation relative to pulling, the lateral temperature gradient, play essential roles in determining the eutectic pattern. Finally, we explore eutectic morphologies, which form when one of the solid phases are faceted, and investigate cases, in which the kinetic anisotropy for the two solid phases are drastically different

    Cleaving Method for Molecular Crystals and Its Application to Calculation of the Surface Free Energy of Crystalline β-d-Mannitol at Room Temperature

    Get PDF
    Calculation of the surface free energy (SFE) is an important application of the thermodynamic integration (TI) methodology, which was mainly employed for atomic crystals (such as Lennard-Jones or metals). In this work, we present the calculation of the SFE of a molecular crystal using the cleaving technique which we implemented in the LAMMPS molecular dynamics package. We apply this methodology to a crystal of β-d-mannitol at room temperature and report the results for two types of force fields belonging to the GROMOS family: All atoms and united atoms. The results show strong dependence on the type of force field used, highlighting the need for the development of better force fields to model the surface properties of molecular crystals. In particular, we observe that the united-atoms force field, despite its higher degree of coarse graining compared to the all-atoms force field, produces SFE results in better agreement with the experimental results from inverse gas chromatography measurements

    Atomistics of pre-nucleation layering of liquid metals at the interface with poor nucleants

    No full text
    Liquid layering at heterogeneous solid/liquid interfaces is a general phenomenon, which provides structural templates for nucleation of crystalline phases on potent nucleants. However, its efficacy near poor nucleants is incompletely understood. Here we use a combination of X-ray crystal truncation rod analysis and ab initio molecular dynamics to probe the pre-nucleation liquid layering at the sapphire–aluminium solid/liquid interface. At the sapphire side, a ~1.6 aluminium-terminated structure develops, and at the liquid side, two pre-nucleation layers emerge at 950 K. No more pre-nucleation layer forms with decreasing temperature indicating that nucleation of crystalline aluminium through layer-by-layer atomic adsorption of liquid atoms is not favoured. Instead, the appearance of stochastically-formed nuclei near the substrate is supported by our experiments. Nucleation on poor nucleants is dominated by the stochastic nucleation events which are substantially influenced by the pre-nucleation layers that determine the surface structure in contact with the nuclei

    Multiscale, Multiphysics Numerical Modeling of Fusion Welding with Experimental Characterization and Validation

    Get PDF
    Various physical interfacial phenomena occur during the process of welding and influence the final properties of welded structures. As the features of such interfaces depend on physics that resolve at different spatial scales, a multiscale and multiphysics numerical modeling approach is necessary. In a collaborative research project Modeling of Interface Evolution in Advanced Welding, a novel strategy of model linking is employed in a multiscale, multiphysics computational framework for fusion welding. We only directly link numerical models that are on neighboring spatial scales instead of trying to link all submodels directly together through all available spatial scales. This strategy ensures that the numerical models assist one another via smooth data transfer, avoiding the huge difficulty raised by forcing models to attempt communication over many spatial scales. Experimental activities contribute to the modeling work by providing valuable input parameters and validation data. Representative examples of the results of modeling, linking and characterization are presented. © 2012 TMS
    corecore