23 research outputs found

    Phylogenetic diversity and relationships among species of genus Nicotiana using RAPDs analysis

    Get PDF
    Fifty six Nicotiana species were used to construct phylogenetic trees and to asses the genetic relationships between them. Genetic distances estimated from RAPD analysis was used to construct phylogenetic trees using Phylogenetic Inference Package (PHYLIP). Since phylogenetic relationships estimated for closely related species are more reliable than that estimated for distantly related species,analyses were conducted separately for groups of taxonomically related species. The results of the present investigation are broadly similar to the inferences by Goodspeed (1954) on the divergence andevolution of Nicotiana species. As would be expected, species included in the same or related subgeneric sections showed greater genetic affinity than species included in distant subgeneric sections. Available information on the geographical distribution of species, their karyotype differentiation in evolution, genome size variation and chromosome affinity in interspecific hybrids were used to interpret the results. The study has confirmed that the RAPD analysis is suitable for studying phylogenetic relationships between related species

    The only African wild tobacco, Nicotiana africana: Alkaloid content and the effect of herbivory

    Get PDF
    Herbivory in some Nicotiana species is known to induce alkaloid production. This study examined herbivore-induced defenses in the nornicotine-rich African tobacco N. africana, the only Nicotiana species indigenous to Africa. We tested the predictions that: 1) N. africana will have high constitutive levels of leaf, flower and nectar alkaloids; 2) leaf herbivory by the African bollworm Helicoverpa armigera will induce increased alkaloid levels in leaves, flowers and nectar; and 3) increased alkaloid concentrations in herbivore-damaged plants will negatively affect larval growth. We grew N. africana in large pots in a greenhouse and exposed flowering plants to densities of one, three and six fourth-instar larvae of H. armigera, for four days. Leaves, flowers and nectar were analyzed for nicotine, nornicotine and anabasine. The principal leaf alkaloid was nornicotine (mean: 28 µg/g dry mass) followed by anabasine (4.9 µg/g) and nicotine (0.6 µg/g). Nornicotine was found in low quantities in the flowers, but no nicotine or anabasine were recorded. The nectar contained none of the alkaloids measured. Larval growth was reduced when leaves of flowering plants were exposed to six larvae. As predicted by the optimal defense theory, herbivory had a localized effect and caused an increase in nornicotine concentrations in both undamaged top leaves of herbivore damaged plants and herbivore damaged leaves exposed to one and three larvae. The nicotine concentration increased in damaged compared to undamaged middle leaves. The nornicotine concentration was lower in damaged leaves of plants exposed to six compared to three larvae, suggesting that N. africana rather invests in new growth as opposed to protecting older leaves under severe attack. The results indicate that the nornicotine-rich N. africana will be unattractive to herbivores and more so when damaged, but that potential pollinators will be unaffected because the nectar remains alkaloid-free even after herbivory
    corecore