9 research outputs found

    Atomically dispersed Pt-N-4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction

    Get PDF
    Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N-4 sites doped on a carbon nanotube (Pt-1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt-1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt-1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N-4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER

    Stabilizing the Meniscus for Operando Characterization of Platinum During the Electrolyte Consuming Alkaline Oxygen Evolution Reaction

    Get PDF
    Achieving a molecular-level understanding of interfacial (photo)electrochemical processes is essential in order to tailor novel and highly-performing catalytic systems. The corresponding recent development of in situ and operando tools has posed new challenges on experimental architectures. In this study, we use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to probe the solid/liquid electrified interface of a polycrystalline Pt sample in contact with an alkaline electrolyte during hydrogen and oxygen evolution reactions. Using the “dip-and-pull” technique to probe the interface through a thin liquid layer generated on the sample surface, we observe that the electrolyte meniscus becomes unstable under sustained driving of an electrolyte-consuming reaction (such as water oxidation). The addition of an electrochemically inert supporting electrolyte mitigates this issue, maintaining a stable meniscus layer for prolonged reaction times. In contrast, for processes in which the electrolyte is replenished in the reaction pathway (i.e. water reduction in alkaline conditions), we find that the solid/liquid interface remains stable without addition of a secondary supporting electrolyte. The approach described in this work allows the extension of operando AP-XPS capabilities using the “dip-and-pull” method to a broader class of reactions consuming ionic species during complex interfacial faradaic processes
    corecore