36 research outputs found

    Novel Crystalline SiO2 Nanoparticles via Annelids Bioprocessing of Agro-Industrial Wastes

    Get PDF
    The synthesis of nanoparticles silica oxide from rice husk, sugar cane bagasse and coffee husk, by employing vermicompost with annelids (Eisenia foetida) is reported. The product (humus) is calcinated and extracted to recover the crystalline nanoparticles. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS) show that the biotransformation allows creating specific crystalline phases, since equivalent particles synthesized without biotransformation are bigger and with different crystalline structure

    Not Available

    No full text
    Not AvailableIn tropical regions of India, a number of diseases and insect pests cause substantial economic damage to the grape crop and timely pesticide applications are required for crop protection. At times, this results in detection of pesticide residue above the specified maximum residue levels (MRL) at harvest affecting international trade. Use of Bacillus species to enhance the degradation of the pesticide residues on grape berries is an emerging option. In this study, the bio-efficacy of a WP formulation of Bacillus subtilis DR-39 in enhancing the dissipation rate of eight pesticides was evaluated during 2016–2017 and 2017–2018 on Thompson Seedless grapes. The pesticides were applied twice as foliar spray at their recommended doses followed by application of B. subtilis DR-39 at 1.0, 2.5 and 5.0 g/l after 4 days of the second pesticide application. In 2017–2018, B. subtilis DR-39 was applied at 2.5 g/l, twice at 4 day intervals. The pesticide residues were analysed on LC–MS/MS by ethyl acetate based extraction method on a time frame and degradation kinetics were calculated. The average enhancement in dissipation by B. subtilis DR-39 was 13.7% @ 1.0 g/l, 19.0% @ 2.5 g/l and 22.7% @ 5.0 g/l. Application of B. subtilis DR-39 @ 2.5 g/l reduced the calculated half-life of the pesticides by 1–3 days, except by 5 and 6.5 days for buprofezin and hexaconazole respectively during 2016–2017, and by 6 days for hexaconazole during 2017–2018. Studies show that B. subtilis DR-39 applications in vineyards can be utilized for faster degradation of multi-class pesticide residues.Not Availabl
    corecore