14 research outputs found

    The ineffectiveness of entrepreneurship policy:Is policy formulation to blame?

    Get PDF
    Entrepreneurship policy has been criticised for its lack of effectiveness. Some scholars, such as Scott Shane in this journal, have argued that it is ‘bad’ public policy. But this simply begs the question why the legislative process should generate bad policy? To answer this question this study examines the UK’s enterprise policy process in the 2009–2010 period. It suggests that a key factor for the ineffectiveness of policy is how it is formulated. This stage in the policy process is seldom visible to those outside of government departments and has been largely ignored by prior research. The application of institutional theory provides a detailed theoretical understanding of the actors and the process by which enterprise policy is formulated. We find that by opening up the ‘black box’ of enterprise policy formulation, the process is dominated by powerful actors who govern the process with their interests

    Extracorporeal Membrane Oxygenation for Acute Pediatric Respiratory Failure

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The use of extracorporeal membrane oxygenation (ECMO) to support children with acute respiratory failure has steadily increased over the past several decades, with major advancements having been made in the care of these children. There are, however, many controversies regarding indications for initiating ECMO in this setting and the appropriate management strategies thereafter. Broad indications for ECMO include hypoxia, hypercarbia, and severe air leak syndrome, with hypoxia being the most common. There are many disease-specific considerations when evaluating children for ECMO, but there are currently very few, if any, absolute contraindications. Venovenous rather than veno-arterial ECMO cannulation is the preferred configuration for ECMO support of acute respiratory failure due to its superior side-effect profile. The approach to lung management on ECMO is variable and should be individualized to the patient, with the main goal of reducing the risk of VILI. ECMO is a relatively rare intervention, and there are likely a minimum number of cases per year at a given center to maintain competency. Patients who have prolonged ECMO runs (i.e., greater than 21 days) are less likely to survive, though no absolute duration of ECMO that would mandate withdrawal of ECMO support can be currently recommended

    Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification

    No full text
    Systematic laboratory scale experiments on coal blocks can provide significant insight into the underground coal gasification (UCG) process. Our earlier work has demonstrated the various features of the early UCG cavity shape and rate of growth through lab-scale experiments on coal combustion, wherein the feed gas is oxygen. In this paper, we study the feasibility of in situ gasification of coal in a similar laboratory scale reactor set-up, under conditions relevant for field practice of UCG, using an oxygen-steam mixture as the feed gas. By performing the gasification reaction in a cyclic manner, we have been able to obtain a product gas with hydrogen concentrations as high as 39% and a calorific value of 178 kJ/mol. The effect of various operating parameters such as feed temperature, feed steam to oxygen ratio, initial combustion time and so on, on the product gas composition is studied and the optimum operating conditions in order to achieve desired conversion to syngas, are determined. We also study the effect of various design and operating parameters on the evolution of the gasification cavity. Empirical correlations are proposed for the change in cavity volume and its dimensions in various directions. The results of the previous study on the combustion cavity evolution are compared with this gasification study. (C) 2011 Elsevier Ltd. All rights reserved

    A process model for underground coal gasification - Part-II growth of outflow channel

    No full text
    Underground Coal Gasification (UCG) is a process of gasifying coal in-situ to produce syn-gas. The gas thus produced, passes through the outflow channel that leads to the production well. As explained in part-I of this paper (Samdani et al., 2015), UCG can be divided in two distinct phases. The phase-I corresponds to initial vertical growth of the cavity and the output from phase-I model provides input to the phase-II model. This paper presents an unsteady state model for phase-II of UCG, wherein, the growth occurs in the horizontal direction towards the production well through the outflow channel. A compartment model, based on tracer studies performed on actual UCG cavity, is developed for phase-II of UCG. Here, the outflow channel is divided in small sections along the length, each consisting of rubble zone, void zone and roof at the top. This reduces the complexity caused by non-ideal flow patterns and changing sizes of different subzones inside the outflow channel. The subzones and the sections are linked appropriately, for mass and energy flow, to give overall performance of UCG. The proposed approach combines chemical reactions, heat and mass transfer effects, spalling characteristic and complex flow patterns to achieve meaningful results. In all, seven gas species, three solid species and eleven reactions are included. The simulation results such as variation in solid density, dynamics of different zones, exit gas quality are presented. The model is validated by comparing the predicted exit gas quality and that observed during similar laboratory scale experiments. Finally the results are also compared with pilot scale field-trials. This model along with the phase-I model provides a complete modeling solution for UCG process. (C) 2016 Elsevier Ltd. All rights reserved

    Comparison between two types of Indian coals for the feasibility of Underground Coal Gasification through laboratory scale experiments

    No full text
    Underground Coal Gasification (UCG) process is studied through systematic laboratory scale experiments. Our earlier published work (Daggupati et al., 2011) demonstrated the various features of the Indian lignite coal in context of its applicability for UCG. In the present work, we study a hard Indian coal, with low volatile matter and moisture content. These results are compared with that of lignite type soft Indian coal, which has relatively high volatile matter and moisture content. The syn-gas produced from hard coal has a calorific value of 69 kJ/mol whereas the syn-gas from lignite coal has a higher calorific value of 170 kJ/mol, under similar conditions, in the laboratory experiments that mimic UCG process. Since UCG is a complex process involving different phenomena like spalling, gas-solid reactions of char and diffusion of gas in the char layer, separate studies on these aspects are required to explain the difference in the behaviors of these two coals in UCG. Spalling tendencies of these two coals are studied qualitatively by performing separate sets of experiments and the findings are used to explain the laboratory scale UCG results. The spalling experiments show that the hard coal has no tendency to spall, but lignite coal spalls, especially under high temperature and reactive atmosphere. The reactivity of the respective chars is studied separately using Thermo Gravimetric Analyzer. It is found that the char produced from lignite coal has higher reactivity of around ten times than the char produced from the hard coal. The paper thus presents a simple laboratory method to evaluate the feasibility of a given coal for UCG with theoretical analysis of the results obtained. (C) 2013 Elsevier Ltd. All rights reserved

    A process model for underground coal gasification - Part-I: Cavity growth

    No full text
    In underground coal gasification (UCG), a cavity is formed in the coal seam due to consumption of coal. The irregular-shaped cavity consists of a spalled-rubble on the cavity floor, a cavity roof and a void zone between the two. Depending on the cavity growth pattern, UCG process can be divided into two distinct phases. In phase-I, coal/char near injection well gets consumed and cavity grows in a vertical direction and hits the overburden. Phase-II starts thereafter, in which the cavity grows in the horizontal direction toward the production well. This paper presents an unsteady-state model for gas production during phase-I for a coal under consideration for UCG. The non-ideal flow patterns in the cavity are determined using computational fluid dynamics (CFD). The CFD results and residence time distribution (RTD) studies show that the complex UCG cavity can be reduced to a computationally less time consuming compartment model consisting of a radial plug flow reactor (PFR) followed by a continuous stirred tank reactor (CSTR). The developed compartment model incorporates reaction kinetics, heat-transfer, mass-transfer, diffusional limitations and thermo-mechanical failure effects for the coal of interest. The model is tested on a lab scale UCG; it can predict the location of reaction and drying fronts, profiles of solid and gas compositions, exit gas calorific value and cavity growth rates. Further, the model predictions show an excellent match with the cavity growth rate and exit gas quality observed during laboratory-scale UCG-like experiments on the coal of interest. Therefore, the model can potentially be used to determine feasibility of UCG for any other coal for the known kinetics and spalling parameters. (C) 2016 Elsevier Ltd. All rights reserved

    Experimental studies on spalling characteristics of Indian lignite coal in context of underground coal gasification

    No full text
    Underground Coal Gasification (UCG) is considered to be a clean coal technology primarily intended to utilize deep underground (>300 m) coal deposits. In this process, a mixture of reactant gases like air/oxygen and steam are injected directly to an ignited portion of underground coal seam. UCG involves complex interactions of different processes like drying, pyrolysis, chemical reactions and spalling. Spalling is detachment of small coal particles from the coal seam due to interconnection of cracks developed in it. It plays an important role by offering higher surface area to give improved performance. The mechanism of spalling and its characterization are not well understood. Furthermore, there are no well established experimental techniques to measure the spalling rates. This paper studies spalling behavior of a lignite coal, which is characterized by high moisture and volatile matter, and suggests a possible underlying mechanism. The rate of spalling was measured using an experimental setup under the UCG-like conditions. In this setup, a reacting coal block was attached to a load cell and suspended in a UCG-like environment. When the experiments were repeated under similar conditions with different blocks of same coal, it was found that there were variations in the rates of spalling. This might be due to the heterogeneity in coal blocks in the form of originally present fissures or weak regions. A UCG process model was used to explain these experimental results and also to investigate the effect of spalling rate on product gas calorific value. We believe that spalling happens due to formation and extension of cracks. Hence a microscopic crack pattern on a heated coal monolith was examined in different stages of heating to understand the mechanism of spalling. It is concluded that cracks are first formed during the initial stage of drying due to the capillary stresses developed due to removal of moisture from the pores and were further extended due to shrinkage of coal during pyrolysis. The detachment of coal particles happens due to horizontal linking of vertical cracks, which might result out of either horizontal cracks, if any, or available fissures and weak regions or relatively weak interlayer bonding at the bedding planes. (C) 2015 Elsevier Ltd. All rights reserved

    Regional environmental performance and governance quality: a nonparametric analysis

    No full text
    This paper applies nonparametric estimators to examine the effect of regional quality of government on the environmental performance in the NUTS 1 regions in France, Germany, and the UK. A novel measure on governance is used, gauging the partiality, corruption and effectiveness of government services in each region. By utilizing regional-level measures of three pollutants (CO2, CH4 and N2O), the effect of governance on environmental efficiency is analyzed. The empirical analysis suggests that there is a nonlinear relationship between regions’ governance quality levels and their environmental performance. It appears that the effect of regional quality of governance is positive up to a certain level, then turning slightly negative. This suggests that higher governance quality will not always result in increased environmental efficiency. © 2015 Society for Environmental Economics and Policy Studies and Springer Japa
    corecore