51 research outputs found

    Prevalence of human papillomavirus infection in women in Benin, West Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer ranks as the first most frequent cancer among women in Benin. The major cause of cervical cancer now recognized is persistent infection of Human Papillomavirus (HPV). In Benin there is a lack of screening programs for prevention of cervical cancer and little information exists regarding HPV genotype distribution.</p> <p>Methods</p> <p>Cervical cells from 725 women were examined for the presence of viral DNA by means of a polymerase chain reaction (PCR) multiplex-based assay with the amplification of a fragment of L1 region and of E6/E7 region of the HPV genome, and of abnormal cytology by Papanicolaou method. The association between HPV status and Pap test reports was evaluated. Socio-demographic and reproductive characteristics were also related.</p> <p>Results</p> <p>A total of 18 different HPV types were identified, with a prevalence of 33.2% overall, and 52% and 26.7% among women with and without cervical lesions, respectively. Multiple HPV infections were observed in 40.2% of HPV-infected women. In the HPV-testing group, the odds ratio for the detection of abnormal cytology was 2.98 (95% CI, 1.83-4.84) for HPV positive in comparison to HPV negative women. High risk types were involved in 88% of infections, most notably HPV-59, HPV-35, HPV-16, HPV-18, HPV-58 and HPV-45. In multiple infections of women with cytological abnormalities HPV-45 predominated.</p> <p>Conclusions</p> <p>This study provides the first estimates of the prevalence of HPV and type-specific distribution among women from Benin and demonstrates that the epidemiology of HPV infection in Benin is different from that of other world regions. Specific area vaccinations may be needed to prevent cervical cancer and the other HPV-related diseases.</p

    Cyclodextrin modulation of gallic acid in vitro antibacterial activity

    Get PDF
    The substitution of large spectrum antibiotics for natural bioactive molecules (especially polyphenolics) for the treatment of wound infections has come into prominence in the pharmaceutical industry. However, the use of such molecules depends on their stability during environmental stress and on their ability to reach the action site without losing biological properties. The application of cyclodextrins as a vehicle for polyphenolics protection has been documented and appears to enhance the properties of bioactive molecules. Therefore, the encapsulation of gallic acid, an antibacterial agent with low stability, by -cyclodextrin, (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin, was investigated. Encapsulation by -cyclodextrin was confirmed for pH 3 and 5, with similar stability parameters. The (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin interactions with gallic acid were only confirmed at pH 3. Among the three cyclodextrins, better gallic acid encapsulation were observed for (2-hydroxy) propyl--cyclodextrin, followed by -cyclodextrin and methyl--cyclodextrin. The effect of cyclodextrin encapsulation on the gallic acid antibacterial activity was also analysed. The antibacterial activity of the inclusion complexes was investigated here for the first time. According to the results, encapsulation of gallic acid by (2-hydroxy) propyl--cyclodextrin seems to be a viable option for the treatment of skin and soft tissue infections, since this inclusion complex has good stability and antibacterial activity.The authors are grateful for the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the "Programa Operacional Regional do Norte" (ON.2-O Novo Norte), QREN, FEDER. The authors also acknowledge the project "Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB", Ref. FCOMP-01-0124-FEDER-027462. This work is, also, funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE and National Funds through FCT-Foundation for Science and Technology under the project PEst-C/CTM/UI0264/2011. Additionally, the authors would like to thank the FCT for the grant for E. Pinho (SFRH/BD/62665/2009)

    Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS

    Get PDF
    Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of antioxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the antiproliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation

    Tissue-Restricted Expression of Nrf2 and Its Target Genes in Zebrafish with Gene-Specific Variations in the Induction Profiles

    Get PDF
    The Keap1-Nrf2 system serves as a defense mechanism against oxidative stress and electrophilic toxicants by inducing more than one hundred cytoprotective proteins, including antioxidants and phase 2 detoxifying enzymes. Since induction profiles of Nrf2 target genes have been studied exclusively in cultured cells, and not in animal models, their tissue-specificity has not been well characterized. In this paper, we examined and compared the tissue-specific expression of several Nrf2 target genes in zebrafish larvae by whole-mount in situ hybridization (WISH). Seven zebrafish genes (gstp1, mgst3b, prdx1, frrs1c, fthl, gclc and hmox1a) suitable for WISH analysis were selected from candidates for Nrf2 targets identified by microarray analysis. Tissue-restricted induction was observed in the nose, gill, and/or liver for all seven genes in response to Nrf2-activating compounds, diethylmaleate (DEM) and sulforaphane. The Nrf2 gene itself was dominantly expressed in these three tissues, implying that tissue-restricted induction of Nrf2 target genes is defined by tissue-specific expression of Nrf2. Interestingly, the induction of frrs1c and gclc in liver and nose, respectively, was quite low and that of hmox1a was restricted in the liver. These results indicate the existence of gene-specific variations in the tissue specificity, which can be controlled by factors other than Nrf2

    Multi-center feasibility study evaluating recruitment, variability in risk factors and biomarkers for a diet and cancer cohort in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>India's population exhibits diverse dietary habits and chronic disease patterns. Nutritional epidemiologic studies in India are primarily of cross-sectional or case-control design and subject to biases, including differential recall of past diet. The aim of this feasibility study was to evaluate whether a diet-focused cohort study of cancer could be established in India, providing insight into potentially unique diet and lifestyle exposures.</p> <p>Methods</p> <p>Field staff contacted 7,064 households within three regions of India (New Delhi, Mumbai, and Trivandrum) and found 4,671 eligible adults aged 35-69 years. Participants completed interviewer-administered questionnaires (demographic, diet history, physical activity, medical/reproductive history, tobacco/alcohol use, and occupational history), and staff collected biological samples (blood, urine, and toenail clippings), anthropometric measurements (weight, standing and sitting height; waist, hip, and thigh circumference; triceps, sub-scapula and supra-patella skin fold), and blood pressure measurements.</p> <p>Results</p> <p>Eighty-eight percent of eligible subjects completed all questionnaires and 67% provided biological samples. Unique protein sources by region were fish in Trivandrum, dairy in New Delhi, and pulses (legumes) in Mumbai. Consumption of meat, alcohol, fast food, and soft drinks was scarce in all three regions. A large percentage of the participants were centrally obese and had elevated blood glucose levels. New Delhi participants were also the least physically active and had elevated lipids levels, suggesting a high prevalence of metabolic syndrome.</p> <p>Conclusions</p> <p>A high percentage of participants complied with study procedures including biological sample collection. Epidemiologic expertise and sufficient infrastructure exists at these three sites in India to successfully carry out a modest sized population-based study; however, we identified some potential problems in conducting a cohort study, such as limited number of facilities to handle biological samples.</p

    Using heat treatment effects and EBSD analysis to tailor microstructure of hybrid Mg nanocomposite for enhanced overall mechanical response

    No full text
    In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment

    Mg/BN nanocomposites: Nano-BN addition for enhanced room temperature tensile and compressive response

    No full text
    The present study elucidates the effects of nanoscale boron nitride particles addition on the microstructural and mechanical characteristics of monolithic magnesium. Novel light-weight Mg nanocomposites containing 0.3, 0.6 and 1.2vol% nano-size boron nitride particulates were synthesized using the disintegrated melt deposition method followed by hot extrusion. Microstructural characterization of developed Mg/x-boron nitride composites revealed significant grain refinement due to the uniform distribution of nano-boron nitride particulates. Texture analysis of selected Mg-1.2 boron nitride nanocomposite showed an increase in the intensity of fiber texture alongside enhanced localized recrystallization when compared to monolithic Mg. Mechanical properties evaluation under indentation, tension and compression loading indicated superior response of Mg/x-boron nitride composites in comparison to pure Mg. The uniform distribution of nanoscale boron nitride particles and the modified crystallographic texture achieved due to the nano-boron nitride addition attributes to the superior mechanical characteristics of Mg/boron nitride nanocomposites

    Assessing sustainability risks in the supply chain of the textile industry under uncertainty

    Full text link
    Today, sustainability has gained significant importance in supply chain management due to its strategic business advantages. Concurrently, industries are facing supply chain sustainability risks emanated from diversified sources. So far, however, literature is scarce regarding sustainability risk assessment. To fill this research gap, this paper presents a real-life case study of the textile industry to identify and quantify supply chain sustainability risks. In this paper, the fuzzy synthetic evaluation method is applied to compute the likelihood of occurrence, amount of impact, risk criticality of each risk factor group, and the total risk. This study finds five risk groups along with twenty sustainability risk factors. The risk groups are listed as ‘supplier’, ‘financial’, ‘social’, ‘transportation’, and ‘environmental’, based on their respective risk criticality values. The top three sustainability risk factors are ‘poor product transportation system’, ‘air, water, and soil pollution’, and ‘factory fire’. The overall risk criticality value of sustainability risks of the case industry is found as approximately high. An objective of this study is to guide practitioners to take the required strategic steps to assess and manage sustainability risks in their supply chains
    corecore