58 research outputs found

    Intensified treatment with high dose Rifampicin and Levofloxacin compared to standard treatment for adult patients with Tuberculous Meningitis (TBM-IT): protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tuberculous meningitis is the most severe form of tuberculosis. Mortality for untreated tuberculous meningitis is 100%. Despite the introduction of antibiotic treatment for tuberculosis the mortality rate for tuberculous meningitis remains high; approximately 25% for HIV-negative and 67% for HIV positive patients with most deaths occurring within one month of starting therapy. The high mortality rate in tuberculous meningitis reflects the severity of the condition but also the poor antibacterial activity of current treatment regimes and relatively poor penetration of these drugs into the central nervous system. Improving the antitubercular activity in the central nervous system of current therapy may help improve outcomes. Increasing the dose of rifampicin, a key drug with known poor cerebrospinal fluid penetration may lead to higher drug levels at the site of infection and may improve survival. Of the second generation fluoroquinolones, levofloxacin may have the optimal pharmacological features including cerebrospinal fluid penetration, with a ratio of Area Under the Curve (AUC) in cerebrospinal fluid to AUC in plasma of >75% and strong bactericidal activity against <it>Mycobacterium tuberculosis</it>. We propose a randomized controlled trial to assess the efficacy of an intensified anti-tubercular treatment regimen in tuberculous meningitis patients, comparing current standard tuberculous meningitis treatment regimens with standard treatment intensified with high-dose rifampicin and additional levofloxacin.</p> <p>Methods/Design</p> <p>A randomized, double blind, placebo-controlled trial with two parallel arms, comparing standard Vietnamese national guideline treatment for tuberculous meningitis with standard treatment <it>plus </it>an increased dose of rifampicin (to 15 mg/kg/day total) and additional levofloxacin. The study will include 750 patients (375 per treatment group) including a minimum of 350 HIV-positive patients. The calculation assumes an overall mortality of 40% vs. 30% in the two arms, respectively (corresponding to a target hazard ratio of 0.7), a power of 80% and a two-sided significance level of 5%. Randomization ratio is 1:1. The primary endpoint is overall survival, i.e. time from randomization to death during a follow-up period of 9 months. Secondary endpoints are: neurological disability at 9 months, time to new neurological event or death, time to new or recurrent AIDS-defining illness or death (in HIV-positive patients only), severe adverse events, and rate of treatment interruption for adverse events.</p> <p>Discussion</p> <p>Currently very few options are available for the treatment of TBM and the mortality rate remains unacceptably high with severe disabilities seen in many of the survivors. This trial is based on the hypothesis that current anti-mycobacterial treatment schedules for TBM are not potent enough and that outcomes will be improved by increasing the CSF penetrating power of this regimen by optimising dosage and using additional drugs with better CSF penetration.</p> <p>Trial registration</p> <p>International Standard Randomised Controlled Trial Number <a href="http://www.controlled-trials.com/ISRCTN61649292">ISRCTN61649292</a></p

    Withanolides and related steroids

    Get PDF
    Since the isolation of the first withanolides in the mid-1960s, over 600 new members of this group of compounds have been described, with most from genera of the plant family Solanaceae. The basic structure of withaferin A, a C28 ergostane with a modified side chain forming a ÎŽ-lactone between carbons 22 and 26, was considered for many years the basic template for the withanolides. Nowadays, a considerable number of related structures are also considered part of the withanolide class; among them are those containing Îł-lactones in the side chain that have come to be at least as common as the ÎŽ-lactones. The reduced versions (Îł and ÎŽ-lactols) are also known. Further structural variations include modified skeletons (including C27 compounds), aromatic rings and additional rings, which may coexist in a single plant species. Seasonal and geographical variations have also been described in the concentration levels and types of withanolides that may occur, especially in the Jaborosa and Salpichroa genera, and biogenetic relationships among those withanolides may be inferred from the structural variations detected. Withania is the parent genus of the withanolides and a special section is devoted to the new structures isolated from species in this genus. Following this, all other new structures are grouped by structural types. Many withanolides have shown a variety of interesting biological activities ranging from antitumor, cytotoxic and potential cancer chemopreventive effects, to feeding deterrence for several insects as well as selective phytotoxicity towards monocotyledoneous and dicotyledoneous species. Trypanocidal, leishmanicidal, antibacterial, and antifungal activities have also been reported. A comprehensive description of the different activities and their significance has been included in this chapter. The final section is devoted to chemotaxonomic implications of withanolide distribution within the Solanaceae. Overall, this chapter covers the advances in the chemistry and biology of withanolides over the last 16 years.Fil: Misico, Rosana Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica OrgĂĄnica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂ­sicos Aplicados a la QuĂ­mica OrgĂĄnica (i); ArgentinaFil: Nicotra, V.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal (p); Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Departamento de QuĂ­mica OrgĂĄnica; ArgentinaFil: Oberti, Juan Carlos MarĂ­a. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal (p); Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Departamento de QuĂ­mica OrgĂĄnica; ArgentinaFil: Barboza, Gloria Estela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Instituto Multidisciplinario de BiologĂ­a Vegetal (p); Argentina. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Departamento de Farmacia; ArgentinaFil: Gil, Roberto Ricardo. University Of Carnegie Mellon; Estados UnidosFil: Burton, Gerardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂ­mica OrgĂĄnica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Unidad de MicroanĂĄlisis y MĂ©todos FĂ­sicos Aplicados a la QuĂ­mica OrgĂĄnica (i); Argentin

    Overactive bladder – 18 years – Part II

    Full text link
    • 

    corecore