32 research outputs found

    Hydrogen adsorption capacity of adatoms on double carbon vacancies of graphene: A trend study from first principles

    Full text link
    Structural stability and hydrogen adsorption capacity are two key quantities in evaluating the potential of metal-adatom decorated graphene for hydrogen storage and related devices. We have carried out extensive density functional theory calculations for the adsorption of hydrogen molecules on 12 different adatom (Ag, Au, Ca, Li, Mg, Pd, Pt, Sc, Sr, Ti, Y, and Zr) decorated graphene surfaces where the adatoms are found to be stabilized on double carbon vacancies, thus overcoming the "clustering problem" that occurs for adatoms on pristine graphene. Ca and Sr are predicted to bind the greatest number, namely six, of H2 molecules. We find an interesting correlation between the hydrogen capacity and the change of charge distribution with increasing H2 adsorption, where Ca, Li, Mg, Sc, Ti, Y, Sr, and Zr adatoms are partial electron donors and Ag, Au, Pd, and Pt are partial electron acceptors. The "18-electron rule" for predicting maximum hydrogen capacity is found not to be a reliable indicator for these systems. © 2013 American Physical Society

    Direct observation of local K variation and its correlation to electronic inhomogeneity in (Ba1-xKx)Fe2As2 Pnictide

    Get PDF
    Local fluctuations in the distribution of dopant atoms are a suspected cause of nanoscale electronic disorder or phase separation observed within the pnictide superconductors. Atom probe tomography results present the first direct observations of dopant nano-clustering in a K-doped 122-phase pnictides. First-principles calculations suggest the coexistence of static magnetism and superconductivity on a lattice parameter length scale over a large range of doping concentrations. Collectively, our results provide evidence for a mixed scenario of phase coexistence and phase separation originating from variation of dopant atom experiments distroibutions.Comment: 4 pages, 4 figures and 1 table, accepted by Physical Review Letter 201

    On the understanding of the microscopic origin of the properties of diluted magnetic semiconductors by atom probe tomography

    No full text
    Spintronics, in which both the spin and charge of electrons are used for logic and memory operations, promises to revolutionize the current information technology. Just as silicon supports microelectronics, diluted magnetic semiconductors (DMSs) will be the platform of spintronics. Ideal DMSs should maintain ferromagnetic and semiconducting properties at operating temperatures to realize the spintronic functions. Although many high-temperature Curie temperature DMSs have been reported, the origin of ferromagnetism remains controversial. Currently, this is a major obstacle to the development of spintronic devices. The solution to this problem depends on a more complete understanding of DMS microstructure, especially the distribution of doped magnetic ions at atomic resolution and any defects introduced. Therefore, an analysis technique is required, possessing both high spatial and elemental resolutions, which is beyond the capability of conventional techniques, such as electron microscopy. However, atom probe tomography (APT), which recently has been successfully applied to nanoscale characterization of structural materials, has the potential to provide the unique combination of near atomic spatial and elemental resolutions needed for such an investigation. © 2008 Elsevier B.V. All rights reserved

    Lattice rectification in atom probe tomography: toward true three-dimensional atomic microscopy.

    No full text
    Atom probe tomography (APT) represents a significant step toward atomic resolution microscopy, analytically imaging individual atoms with highly accurate, though imperfect, chemical identity and three-dimensional (3D) positional information. Here, a technique to retrieve crystallographic information from raw APT data and restore the lattice-specific atomic configuration of the original specimen is presented. This lattice rectification technique has been applied to a pure metal, W, and then to the analysis of a multicomponent Al alloy. Significantly, the atoms are located to their true lattice sites not by an averaging, but by triangulation of each particular atom detected in the 3D atom-by-atom reconstruction. Lattice rectification of raw APT reconstruction provides unprecedented detail as to the fundamental solute hierarchy of the solid solution. Atomic clustering has been recognized as important in affecting alloy behavior, such as for the Al-1.1 Cu-1.7 Mg (at. %) investigated here, which exhibits a remarkable rapid hardening reaction during the early stages of aging, linked to clustering of solutes. The technique has enabled lattice-site and species-specific radial distribution functions, nearest-neighbor analyses, and short-range order parameters, and we demonstrate a characterization of solute-clustering with unmatched sensitivity and precision

    Atomically resolved tomography to directly inform simulations for structure-property relationships

    Full text link
    Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking. Atom probe has emerged as a potential means of achieving this goal. Atom probe generates three-dimensional atomistic images in a format almost identical to many atomistic simulations. However, this data is imperfect, preventing input into computational algorithms to predict material properties. Here we describe a methodology to overcome these limitations, based on a hybrid data format, blending atom probe and predictive Monte Carlo simulations. We create atomically complete and lattice-bound models of material specimens. This hybrid data can then be used as direct input into density functional theory simulations to calculate local energetics and elastic properties. This research demonstrates the role that atom probe combined with theoretical approaches can play in modern materials engineering

    Characterisation of nano-grains in MgB<inf>2</inf> superconductors by transmission Kikuchi diffraction

    Full text link
    © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. We report the first application of the emerging transmission Kikuchi diffraction technique in the scanning electron microscope to investigate nano-grain structures in polycrystalline MgB2 superconductors. Two sintering conditions were considered, and the resulting differences in superconducting properties are correlated to differences in grain structure. A brief comparison to X-ray diffraction results is presented and discussed. This work focusses more on the application of this technique to reveal grain structure, rather than on the detailed differences between the two sintering temperatures
    corecore